Washington State Energy Strategy Advisory Committee

Economic Impact Analysis of the State Energy Strategy

Methodology and Approach Overview
Agenda

FTI Consulting

- Overview of firm and services
- Our role in this project

Economic impact modeling

- Energy models compared to economic impact models
- Integrating energy modeling and economic impact modeling
- **Methodology and approach**
 - IMPLAN
 - REMI
 - Model assumptions and outputs for informing the State Energy Strategy

COVID-19 impacts and economic recovery

- Macroeconomic forecast
- Short-term implications for the State Energy Strategy
FTI Consulting | Economic Impacts Group

FTI CONSULTING OVERVIEW
■ FTI is a large management, technical, and economic consulting firm
■ Economic Impacts Group is a functional group within FTI that uses quantitative models to answer “What If?” questions about the economy and public policy

ECONOMIC IMPACTS GROUP (“EIG”)
■ EIG examines how markets and the economy respond to public policy matters
 — Specific markets (e.g., energy and transportation)
 — Economy (macroeconomic effects)
 — Distributional impacts
 — Demographics

MODELING OVERVIEW
■ EIG utilizes a suite of documented, third-party commercial modeling tools
■ For this study, we will utilize two modeling platforms
 — IMPLAN
 — REMI
Economic impact analysis

<table>
<thead>
<tr>
<th></th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Economic impact analysis</td>
</tr>
<tr>
<td>2</td>
<td>Methodology and approach</td>
</tr>
<tr>
<td>3</td>
<td>Economic recovery</td>
</tr>
<tr>
<td>4</td>
<td>Appendix</td>
</tr>
</tbody>
</table>
What is economic impact analysis?

Energy Systems Analysis

Power Generation
Energy Transmission and Distribution
Transportation
Heating and Industrial Processes

Economic Impact Analysis

Agriculture
Manufacturing
Construction
Service Sector
Households
Governments

Energy Modeling Outputs
Economic Impact Inputs
Integrating energy models and economic impacts
Methodology and approach

1. Economic impact analysis
2. Methodology and approach
3. Economic recovery
4. Appendix
IMPLAN model structure
REMI model structure
Modeling assumptions and results generated

<table>
<thead>
<tr>
<th>Modeling Assumptions</th>
<th>Results Generated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both IMPLAN and REMI rely on federal economic data</td>
<td>IMPLAN and REMI</td>
</tr>
<tr>
<td>- Bureau of Economic Analysis ("BEA")</td>
<td>- Employment</td>
</tr>
<tr>
<td>- Bureau of Labor Statistics ("BLS")</td>
<td>- Business sales</td>
</tr>
<tr>
<td>- U.S. Census Bureau</td>
<td>- Gross domestic product</td>
</tr>
<tr>
<td>- U.S. Energy Information Administration ("EIA")</td>
<td>- Household income</td>
</tr>
<tr>
<td>IMPLAN does not have concepts for energy production, distribution, and prices like REMI</td>
<td>- State government revenues</td>
</tr>
<tr>
<td>These concepts in REMI align with the Annual Energy Outlook ("AEO") and its Reference Case</td>
<td>- Local government revenues</td>
</tr>
<tr>
<td>- Produced by EIA</td>
<td>REMI only</td>
</tr>
<tr>
<td>- Provides the underlying assumptions for the energy market modeling in the project</td>
<td>- Year-by-year forecast and results</td>
</tr>
<tr>
<td>REMI macroeconomic forecast</td>
<td>- Cost-of-living index</td>
</tr>
<tr>
<td>- Short term = University of Michigan</td>
<td>- Demographics</td>
</tr>
<tr>
<td>- Medium term = BLS</td>
<td>- Total population</td>
</tr>
<tr>
<td>- Long term = combination of U.S. Census and trend analyses performed by REMI economists</td>
<td>- Age, racial/ethnic breakdowns, and sex</td>
</tr>
</tbody>
</table>
Distributional and equity analysis

- What is the impact on different **regions** of the state? On **urban** and **rural** areas?

- How are different **economic sectors** influenced? What about **agriculture** and **manufacturing**?

- What is the impact on different **income strata**?

- How does the scenario affect different **races** and **ethnicities**?

- What is the impact of the scenario on **women and men** compared to each other?

- How does the impact change for different **age groups**?
 - Different age groups now (e.g., young and old, etc.)
 - Short-term impact (e.g., early 2020s) and the long-term impact (e.g., late 2040s)
Economic recovery

1. Economic impact analysis
2. Methodology and approach
3. Economic recovery
4. Appendix
Macroeconomic forecast

According to the University of Michigan’s forecast for the U.S. economy, the impact of COVID-19 will peak in 2020 though full recovery to prerecession peaks will take at least a few years.

<table>
<thead>
<tr>
<th>Category</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. GDP Growth Rate</td>
<td>2.3%</td>
<td>-4.0%</td>
<td>3.3%</td>
<td>2.1%</td>
</tr>
<tr>
<td>U.S. Unemployment Rate</td>
<td>3.7%</td>
<td>10.5%</td>
<td>7.8%</td>
<td>7.3%</td>
</tr>
<tr>
<td>Manufacturing Capacity Utilization Rate</td>
<td>77.8%</td>
<td>72.3%</td>
<td>77.9%</td>
<td>79.3%</td>
</tr>
<tr>
<td>Light Vehicle Sales (millions)</td>
<td>16.9</td>
<td>13.3</td>
<td>15.2</td>
<td>15.8</td>
</tr>
<tr>
<td>Private Housing Starts (thousands)</td>
<td>1,297.8</td>
<td>1,007.8</td>
<td>1,092.4</td>
<td>1,197.6</td>
</tr>
</tbody>
</table>
What is the situation in the short term?

- Economic recovery is a focus and a policy priority

 - Federal fiscal and monetary policy = very accommodative

 - Interest rates are low = project capital costs are low

 - High unemployment rates = workers are available

 - Low manufacturing capacity utilization rates = manufacturers available to produce materials and equipment

 - Labor, capital, and input costs = should be at their lowest

- These make conditions for investments favorable in the short term
Solar sector in Washington

- 213 MW of installed solar capacity
 - 32nd among states in 2020
 - 20th in 2019
 - Enough to power 21,500 homes
- 0.22\% of state electricity demand comes from solar generation
- 172 companies
 - 36 manufacturers
 - 71 installers/developers
 - 65 other
- $650 million in capital investments
 - 2019 state GDP in Washington was $560 billion (2.6\% of U.S. GDP)
 - Projected to add another 801 MW of solar over the next five years
Appendix

1. Economic impact analysis
2. Methodology and approach
3. Economic recovery
4. Appendix
Detailed REMI model structure
Detailed distributional and equity analysis

The main strengths of IMPLAN and REMI for this analysis is providing quantitative inputs to the equity impact analysis, which we have organized along six dimensions of the models’ capabilities

- **Geography**
 - Run REMI as a 1-region (statewide) model to pick up dynamic responses
 - Use IMPLAN data on a county-by-county basis to add geographical data
 - The county results will help to determine the urban and rural split in results

- **Economic sectors**
 - REMI has 70 economic sectors
 - These span the economy from natural resources and agriculture, to manufacturers, and to various levels of the service sectors
 - IMPLAN has 544 sectors, though with less reliability than REMI’s 70 sectors

- **Race/ethnicity**
 - REMI has four major demographic categories
 - Non-Hispanic White
 - Non-Hispanic Black
 - Non-Hispanic Other
 - Hispanic ethnicity (all races)
 - Differentiative impacts based on the results of the labor market impacts in the model

- **Sex**
 - REMI has male and female cohorts
 - Differentiative impacts based on the results of the labor market impacts in the model

- **Age**
 - REMI has one-year age cohorts (Age 0 through Age 100+) to allow for differentiation
 - Use labor market results as a basis