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ABSTRACT

Developed by the Pacific Northwest National Laboratory (PNNL) VOLTTRON is a multi-agent
execution platform dedicated to power systems. This open source and modular software supports the
communication between different entities over the grid. This report describes one example of agent
development and software interactions for power management in a campus distribution grid. The
experiment consists in optimizing the operation of an energy storage system based on a lithium-ion battery.
An optimization is performed using a rolling window with a periodic refreshment of the forecasts for both
production and consumption. The objective is to minimize the electrical bill while reducing the peak power
and responding to transactive signals.
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ACRONYMS

MAS Multi-Agent System
JADE Java Agent Development Environment
BESS Battery Energy Storage System
MPC Model Predictive Control '
GAMS General Algebraic Modeling System
API Application Programming Interface
MPPT Maximum Power Point Tracking
kNN k-Nearest Neighbor
TS Transactive Signal
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LIST OF SYMBOLS

Trefresh Rcfresﬁment period between optimization min
Ppy Photovoltaic production kW
Proaa Consumption kW
Plpy Production forecast kW
PPload Consumption forecast kW
G Solar radiation W/m?
Getean Clean sky solar radiation W/m?
G’ Predicted solar radiation W/m?®
T Outdoor temperature °F
T Predicted outdoor temperature O
Trefresh Refreshing period min
Tpred Prediction horizon min
Tlag Screened past time to perform the forecast min
cc Cloud cover %
A Energy rates $/kWh
Apeak Cost of peak demand S/kW
Ars Transactive price-like signal S/kWh
Prot’ Charge power of the BESS kW
Prac Discharge power of the BESS kW
Soc State of charge %
Eror max Maximum energy stored in the battery kWh
Viar Battefy voltage v
Tyt Battery current A
Npara Number of cells in parallel -
Nierie Number of cells in series -
Nbar Tbar Battery efficiency in the linear model %
N evs Converters efficiency %
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1 INTRODUCTION

Multi-Agent Systems (MAS) had received extensive interest to enhance the control of complex
distributed power systems [Kantamneni 15]. In a multi-agent framework the intelligence is distributed with
each entity acting independently in order to satisfy a global objective. One of the main advantages of MAS
is its scalability and fulfillment of privacy constraints with a limited number of information exchanged
between the participants. Many examples of MAS for power systems control can be found in the literature
from the large-scale utility side with voltage regulation [Zhang 16] to the management of buildings in
Demand Response environments [Labeodan 15]. Open sources platforms for agent development exist for
the past two decades and allows implementing control methods for smart grid. In particular the JADE (Java
Agent Development Environment) and ZEUS are Java based platform that allows deploying agent using
GUI interface and providing run time environment or tools for combining Matlab/Simulink
[Kantamneni 15]. VOLTTRON is a command line Python based platform developed by the Pacific
Northwest National Laboratory (PNNL) dedicated to the management of entities over the electrical grid
[Haack 13]. Communications are established thought a central message bus and the platform offers many
functionalities such as Modbus/Bacnet driver or SQL database for data acquisition. Most the published
current applications using VOLTTRON platform refers to building management with sensors and load
scheduling [Khamphanchai 14] or model predictive control for heating and air conditioning system
[Hao 16]. However the flexibility and scalability of the platform make it promising for management strategy
involving different type of electrical equipment. This report presents an agent deployment for the optimal
management of a battery energy storage system (BESS) with PV panels in a campus distribution grid at the
University of Washington, Seattle. The document is organized as follow:

= Section 2 describes the strategy chosen to run the system with the agent organization
s Section 3 details the implementation of the agents

= Section 4 give some simulations results

2 AGENT ARCHITECTURE

2.1  BESS Operation

The University of Washington aims at purchasing a total capacity of 100 kW of PV panels settled on
three of his dorms in addition to a Li-Ion Battery of 325 kWh that would be installed in the basement of the
Electrical Engineering building. The management of the BESS relies on an optimal scheduling performed
on a rolling windows basis of 24 h with a refreshment every Tepesn (30 min by default here) (Fig.1). Every
time the optimization is performed the forecast for the production, the consumption and the energy prices
are refreshed. Also the state of charge (SOC) of the battery is actualized based on measurements in order
to fulfill the overcharge/overdischarge constraints in the process. The optimization is based on a cost
minimization with arbitrage between day and night prices as well as peak power control. The system should
also be able to answer to unpredicted transactive signal (TS) that are likely to occur during its operation.
Those transactive signal will be considered as price-like values and would aim at encouraging an increase
or decrease of the net load depending on the needs of the grid. That aspect is part of the Transactive
Framework that aims at enhancing the efficiency of the power grid with a multi-agents that interact based
on bid-auctions mechanisms which is not in the scope of the presented work.

University Of Washington, Department of Electrical Engineering 6
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Fig.1: Rolling window optimization

2.2  Multi-Agent deployment

Volttron offers a Python development environment to implement the agents using object oriented
programming. Especially those agents exchange information though a common message bus on a

publish/subscribe basis. The python environment allows the communication with a wide range of external
softwares (Matlab, GAMS, SQL servers,....) with dedicated Application Programming Interfaces (APIs)

Fig.2 displays the proposed Volttron architecture to implement the proposed management strategy:

1.

Both consumption and production continuously publish their measured values on the message.

At every time step the data are stored in the platform historian on a SQL database.

At every Trpem a central management agent send queries that trigger the forecasts for the load,

PV and prices profiles.

Especially as it will be developed in the next section the forecasts for the consumption/production

require to access to the last measured values stored in the historian.

An optimization agent then gathers all the predictions as well as the current SOC for the battery
before computing the scheduling for the BESS operation using GAMS (General Algebraic

Modeling System).

The optimal controls are finally sent to the battery controller.

v

_ Forecast
. Prices

— - —Historian query ~ ~emeee Optimal commands
Published topic e Optimization query

Fig.2: Proposed Volttron architecture
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Note that the approach refers to a model predictive control (MPC) of the BESS with a simplified
model of the battery implemented in GAMS. Thus the local battery controller would have to deal with the
actual measurements that do not necessary comply with the predicted schedule in order to fulfill the
operation constraints. That local controller considers the scheduled command until they are refreshed when
a new optimization is performed with actualized inputs.

Note that at the moment nor PV modules and nor smart meters have been installed yet on the UW
campus. Thus the real time simulation of the proposed architecture using the Volttron platform need an
additional agent that fake a real time clock for the system. Typically one second simulation will be
equivalent to 1 minute.

3 AGENT IMPLEMENTATION

3.1 Measure Load and PV

Load Pj,.qa and PV production Ppy are emulated using measurements on site. A whole year (October
2014 to October 2015) of data is available with a time step of 15 min for the Electrical Engineering and
Computer Science Building. The profile show significant base load around 850 kW with peaks around
1000 kW with maximums values of 1200 kW for a total yearly consumption of 8.3 GWh. Another set of
measurement is performed the two last weeks of September 2016 with a time resolution of 5 min. Those
data will be used in the following simulations and displays strong correlation of the load from one day to
the other with similar profiles (Fig.3).

950
500

850

P load (kW)

800

304 2 4 6 8 ' 10 12 14

Time (Day)
" Fig.3: Two weeks load profile (September 2016)

For the production another set of measurements is performed from January 2016 to October 2016
using the real time values of the weather stations belonging to Weather Underground. An agent in Volltron
uses the Weather Underground API (http://www.wunderground.com/weather/api/) to retrieve, among
other, the solar radiation G (in W/m?) and the outdoor temperature T (in °C). The measurements are
performed every 5 min considering the weather station labelled “KWASEATT446” (the closest station with
solar radiation meter) and profiles are saved in one .csv file per month. Recorded data have to be repaired
in order to correct the missing points or extreme values. Fig.4 displays sample results for successive days
of September 2016. In particular the solar radiation values are compared to the profiles returned by a
simplified clean sky model G.., [Bird 81] provided by the National Renewable Energy Laboratory and
that estimates direct, diffuse and reflected beam depending on pressure, ozone and humidity conditions.

University Of Washington, Department of Electrical Engineering 8
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Fig.4: Weather data - a) solar radiation - b) temperature

The measured weather conditions are then send to the PV system model described by and referring
to a simple single diode models for the modules [Darras 10] assuming that the MPPT (Maximum Power
Point Tracking) is correctly achieved. Especially the model requires information provided by the array
manufacturer (Intek 280 W arrays here, http://www.itekenergy.com ). A total number of 359 modules are
considered for an installed capacity of 100 kW dispatched on three dorms buildings in the UW campus (see
Appendix A for more details). Note that the temperature data has to be converted from Fahrenheit to

Celsius.

T-2
Poy =1, xXNpy, x—Cix(PP,,_,,,ax + L p e x(Tj ~TJR)) with TJ = T+G><N—OC~——0

Gy 800 fa-l

With:

= Ppy: power produced by the array (in kW)

= Npy number of array in the considered PV system ()

= Gp: solar radiation in standards conditions (= 1000 W/m?)

" Ppy max - maximum output power of a single array (in kW)

" Jpmax ithe negative deviation of the output power with the temperature (in %./°C)
¥ 7;: the junction temperature of the modules (in °C)

= Tjr: the junction temperature in standards conditions (= 25°C)

= NOCT : the nominal operation cell temperature (in °C)

" A . constant converter efficiency (typically 95 %)

The implemented model also takes account of the parameters of the photovoltaic installation in terms
of tilt 6, and orientation 6, both in degrees. The approach requires computing the solar position (elevation
a, and azimuth angles a,) depending on the considered day in the year and global position. Then Eq.2 is
used in order to correct the solar radiation on the collector by computing the angle of incidence 8 (Eq.3)
[Masters 13]. Based on the preliminary design, the installation is set with a tilt at 10.4 © and oriented South
(6,=0°). Fig.5 displays the profiles obtained for two weeks in September 2016 based on measurement for
solar radiation and temperature. See Appendix B for the detailed computation of the solar angles.

cos = cosa, x cos(f, -, )xsin @, +sin 6, sin a, Eq.2

G« Gxcosf Eq.3

University Of Washington, Department of Electrical Engineering 9
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Fig.5: Two weeks PV production profile (September 2016)
3.2 Forecast Agents

3.2.1 Consumption Prediction

As explained in the previous section, at every s an optimal scheduling for the storage controls is
required and trigger the generation of new forecast for the consumption, the production and the prices.
Regarding the consumption and based on the previous observations the prediction P’ is based on a simple
persistent day to day model (t — 24 h). When the prediction is performed at time ¢ the previous measured
values are screened until 7 — 7,5 (With 1;,, in time steps). Then the values measured 24 h before are corrected
following Eq.4 in order to generate the forecast from t to £ + 24 h (receding horizon of 24 h considered
here). That correction is based on an offset of the 24 h value depending on the measured mean deviation
for the past time steps.

1 (&
Bfad(t)z})load(t_24h)+—;_x ZBoad(t_p)_Pload(t-p—24h) Eq4
lag p=1 '

Fig.6 shows the forecasted versus the measured values for a week day of September with prediction
successively performed at 8:00, 13:00 and 18:00 with 7,,; = 60 min Note that if the prediction horizon is
24 h long only the forecasted value until the end of the considered day are displayed here. The profiles
show that the prediction is accurate for the consecutive time steps and the deviation tends to increase with
longer hirizon. Also the offset correction proves itself efficient with a predicted peak value corrected when
the forecast is performed at 13:00 (moving from Fig.6« to Fig.6b). The prediction for the end of the day is
also improved when the forecast is refreshed at 18:00 ((moving from Fig.6b to Fig.6¢)). '

wwww Measure  ~=-= Forecast ~ @& Time when the prediction is performed

%0/ 9005, 0075

S 850 : g 850
= ; = z
& j " & / 5, <
H 4 3 \ %
S \ 8 Yo 8
500 Sl ™ s00 T 800

s Y \

: g

j | i i

f s ~ ] i

[ 6 12 18 2 6 12 18 a4 0 6 12 18 24
Time () Time (h) Tinse (h)

Fig.6: Sample of load forecast — a) at 8:00 — b) at 13:00 — ¢) at 18:00
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Additional studies are made to estimate the prediction error with the proposed method. Random
prediction samples (Nypp=200) performed at different time are considered for the measurements of
September 2016. In each case both root mean square error £pys and relative error & are computed using
Eq.5 and Eq.6 for different prediction horizon 7, while considering the prediction and measurements
samples (PP toads A0d Pjoggs)

2

N, T
1 sampl ed P

Eputs (Tpred) = N X Z i (})Iood,s (t) - Ploai,s (t)) . Eq’s

Tpred x sampl s=1 1=0

P

1 Voo Tt | By (1) = By, 1)
ER(T prea) = Eq.6
R\ pred N
pred x sampl s=1 1=0 P]oa] K] (t )

Fig.7 displays the result obtained when different values of 7;,, are investigated while performing the
offset correction. It is worth noticing that correcting the previous day measurements strongly improved the
quality of the prediction moving the RMSE from 23 kW down to around 5 kW when forecasting 5 min
ahead (Fig.7a) compare to a case with no offset. With that corrected offset the prediction error tends to
increase for longer prediction horizon and the observed values remains low with less than 1 % of relative
error (Fig.7b). It is also noticeable that increasing the value of 7, slightly decreases the prediction
performances. Thus in the simulations that will be performed in the next section, forecasts will be performed
by considering i;ug of 5 min (i.e. a single time step). Note that with no corrected offset the computed error
is almost constant no matter the considered prediction horizon. That error corresponds to the deviations of
the loadprofiles between successive days. The low value observed are partly explained by the similarity of
the profiles but mostly by the significant base load that represent 90 % of the consumption when the peak
occurs (Fig.2).

meeme No offset = = 7, =35 min = 7y, 15 min seeeee 1y, = 30 min == 7, =60 min
b F 2 - -
18 1.5
- g
= f ‘ 5
4 1 e a2 o] : | : o
S 12: = ;”.J‘;,s*"—“""""“ 51 ‘ _&WWW é
2 g e 2 g |
R el | 5 e
6 g™ - T 0.5 ot
¥ e
'I’;’ i | 4 i
! | { b)
0 - : 0
1 2 3 4 1 2 3 4
Prediction horizon (h) Prediction horizon (h)

Fig.7: Prediction Error Vs Prediction horizon — a) RMSE — b) relative error

With such a chosen approach to generate the forecast based on previous day measurements the
distinction has to be made between week days and the ween-ends as illustrated on Fig.§.

D . T ‘ J
Prediction ] /;;\)/; X ! Y i
EREBIIN
7T ava

Measurements / '/l /A / / / / P
| [ ; |

FSSMTWTFSS

Fig.8: Previous day measurements for day ahead forecast
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3.2.2 PV production Prediction

The solar forecasting methods are divided into two main classes, the statistical approaches on one
hand and the numerical weather prediction models (NWP) on the other [Diagne 13]. The choice of a method
is closely linked to the considered time horizon and the type of data available to perform the forecast (time
sampling and space distribution). Indeed an intra hour forecast would be hazardous if only hourly based
samples of data are available. Physical complex meteorological models are accurate for long term prediction
from several hours to several days ahead while statistical approaches have good performances for intra hour
forecast. In the present work the management strategy relies on a receding horizon optimization with
refreshed forecast every Tyeg.m). The choice is made here to have a “hybrid” prediction using two distinct
models to perform the forecast with different time resolutions. Indeed if the forecast in [7, f + Tyeess] needs
a high resolution we cannot expect the model for the whole 24 h window to have the same time step.

3.2.2.1 Long Term Forecast

Solar radiation and outdoor temperature long term forecasts (G” and T*) are compute using the 24 h
ahead prediction provided by Weather Underground. Those predictions are refreshed every hour and a
returned with an hourly time step. Note that the solar radiation is not directly available in the extracted data.
Instead the cloud cover CC is forecasted with values between 0 % and 100 %. Those estimations are
corrected using Eq.7 in order to compute the predicted solar radiation G" computing the clean sky profile
Goean for the corresponding date-time points [Perez 07]. The clean sky value are once again computed using
the BIRD model.

ccY’
G’ =G, x|1-0.87x| —
clean ( (100) ] Eq.7

3.2.2.2 Short Term Forecast

For the short term forecast (up to one hour ahead with a 5 min discretization) a statistical approach
is considered. Among the possible methods Autoregressive Moving Average (ARMA) and Neural
Networks (NN) are widely used in the literatare [Diagne 13]. In the present work the choice is made to use
the k-Nearest Neighbor (kKNN), a very simple and “lazy” machine learning method based on pattern
recognition for time series {Pedro 12]. Measured values of the variable X from ¢ — 7;,4 are used to compute
the prediction X from to z + Tprea USING Ny training samples X, The distance d(X, X,;) between the
observed X and the every training profile is computed using Eq.8. Then the nearest neighbors profiles (NN)
are selected and ranked in a descend order from X, nwy ; to Xy vy & with & the number of considered NN.
Finally the prediction is computed using Eq.9 with a weight average of the selected NN [Lora 02].

d(X,X,,)= J > (X p)- X, @~ p)f fors=1.N,,, Eq.8
p=l

d(X’Xtr,NN_k) - d(X>Xtr,NN_i)

A X, Xy )= d(X, X 1) Eq.9

X' =

k
- xZw,.xX,,.’,W_,.(t) fort=1..7,,; with w,=

i=1

In the study the 5 min interval measurement collected between January 2016 and August 2016 are -
used as training samples. Then the profiles of September 2016 are considered to test the short term forecasts.
Note that for the solar radiation, the predicted time series is the clarity index X, compute as the ratio

University Of Washington, Department of Electrical Engineering 12
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G / Giean- The idea is to removing the daily/seasonal effects correlated to the deterministic positon of the
sun as in [Paoli 10]. Thus the measured data are pre-processed to extract training and test samples for the
clarity index. Then when the short term forecast is performed the clarity prediction X, is used to obtain the
PV profile. In appendix C different simulations are run to test the short term predictor with different
parameters of the kNN in order to find the best configuration. Finally the number of considered nearest
neighbors is set to £ = 10 and the 1, is set to 15 min (i.e 3 time steps here).

3.2.2.3 Obtained Results

The solar production prediction tool is finally implemented as detailed on Fig.9 with a hybrid
predictor that considers hourly forecast for long term planning and past time step measurements to generate
short term prediction with the kNN method. Note that the computation of the solar angles all along the
prediction horizon is required to correct the power produced by the PV systems at each forecasted time
step. Also the long term forecast are discretized with a time step of 5 min even if the values retrieved using
Weather Underground are given on a hourly basis.

1
Weather Underground Compute BIRD model Past Measurements :1 Compute solar angles |
24h hour ahead for the considered time From 1-7,,,to } for the considered time s
i
forecast steps l G 7 }, ““““““““ it ?135 “““““““ ;
cc clean 4 a,, da,
Getean .| Compute K.
profile /
kNN predictor
2 / \L for temperature
‘ Correction Eq.7 KNN predictor
for clarity index
Kr
Getean -
- > Compute G©
A8 id |G” ¥ o
Log term forecasts l ’ Short term forecasts
\ /

I Compute PV prediction using the module model and the correction with tilt and orientation angles [

Fig.9: Forecast tool for the PV production

Fig.10 displays the results obtained for a tested day in September 2016 with successive predictions
performed. When the forecast is performed at 8:00 (Fig.104) the Weather Underground service returns
close cloud cover values all along the day which explains the “clean” overall predicted profile. Small
deviations can only been observed between 12:00 and 13:00 with different CC values. On (Fig.105) the
difference between short term forecast (1 h ahead here) can be observed with a more dynamic profile
compared to the long term trajectory computed with the clean sky model.

Measure ~ —~~~ Forecast @ Time when the prediction is performed

PV production (kW)

PV production (kW)
PV production (kW)

18 Og

Time (h) Time (h)

Fig.10: Sample of production forecast — a) at 8:00 — b) at 13:00 — ¢) at 15:00
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500 samples are taken from the testing data and both RMSE and relative error for the prediction are
estimated for different time horizon similarly to Eq.5 and Eq.6. Fig.11 displays the prediction error
depending on the considered prediction horizon. Note that with the hybrid model the error strongly
decreases for the first predicted hour compared to a case in wish the whole profile is predicted using the
Weather Underground hourly forecast. Especially the observed error is lower than for a persistent prediction
for the first 30 min ahead. With short term prediction uisng kNN the increment of the error with the
prediction horizon is also more noticeable. However it ca been observed that the computed values appears
to be significant with relative error above 20 % but remain within the range of some performances advised
in the literature [Diagne 13].

Short term forecast with hourly

e Weather Underground value === Short term forecast with KNN === Persistent model
10 : 45
= 9 |™F SR
8
% 8 5 35
% 2
2 7] £ 30
K © i
6 M % s
Short term forecast ¥ / Short term forecast
>Smin Ih 2h 3h 4h 205 min in 2h 3h 4h
Prediction horizon Prediction horizon
Fig.11: Prediction Error — a) RMSE - b) Relative Error
3.2.3 Prices

For the purchase energy the UW campus is subject to retail prices from Seattle City Light
(http://www.seattle. gov/light/ ) for “High Demand General Service City” with peak consumption over
10 MW. As detailed in Table 1 two energy rates A on a day/night basis are set with on On-Peak period from
6:00 to 22:00 and an Off-Peak period from 22:00 to 6:00. Also the peak demand is computed and penalized
with a cost Ap..; as the maximum average consumption over 15 min within the billing period (typically a
month). The Demand Off-Peak is not considered in the study as the peak is expected to occur only during
the On-Peak time

Table 1: Energy rates

Energy On-Peak ($/kWh) A=0.0732
Energy Off-Peak ($/kWh) A=0.0491
Demand On-Peak ($/kW) Apear = 2.08'
Demand Off-Peak ($/kW) Apear=0.22

Note that as the prices remain constant all over the year no forecast tool is implanted to predict them.
However price like transactive signals can randomly occurs without being predicted. Thus in the case study
the possibility of introducing instantaneous signals Ars (typically £10 $/kWh) is investigated in order to
estimates the ability of the system to respond to those unpredicted incentives.

University Of Washington, Department of Electrical Engineering 14
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3.3 GAMS Agent

As explained in the first section of the document the management of the system is based on a MPC
approach with receding horizon. Every time the optimization process is called the previously mentioned
forecasts profile are refreshed before the problem is solved using GAMS. The Python AP is used to forward
those refresh inputs to GAMS that solves a standard problem written in a “.gms” file. The objective is to
minimize the electrical bill on the optimization horizon solving a very basic dispatch problem on the end
user side with deterministic load and production (Eq.10). No balance constraints is introduced with the
main grid considered as an infinite storage here, while the distinction is made for the charge (resp.
discharge) power of the battery Py, (resp Py, ) in generator convention. In addition to the battery power
another variable P, is introduced in order to take the peak demand penalty into account. Thus the
optimization problem finally have 2xz,,..4+ 1 variables (.. expressed in number of time steps) with bounds
expressed in Eq.11 using the maximum charge (resp. discharge) power Pyur max (resp. Prat max’)-

T pred

Min Obj = 4 % Py + 3 (A0 + Aoy (0) (L (5)= L (1) = B () + Py () Eq.10
1=0

0<P’ <P’

bat = * bat_max

0< Pb—at < })b—z;L»)ax Eq.ll
0<P

peak

The battery system is simply modeled by a linear expression linking the state of charge SOC with the
charge/discharge powers and using constant charge/discharge efficiencies (175 and 1. ) that represents
the loss of both storage and power conversion system (Eq.12). The SOC expressed in % requires
considering the time step 47" and the maximum energy stored in the battery Epy ma in kWh with upper and
lower bounds (SOC, . and SOC,,;,) An additional constraints is introduced to ensure that the peak value of
the net load P, corresponds to the actual maximum value computed within the prediction horizon (Eq.13).

P+

SOC(t +1) =SOC(1) + 100xdr (77,;, x Py, = —bfﬂ Eq.12
bat_max bat

Pad® = Py () =By () + Py (DS P, Eq.13

The optimization problem is solved every T,p.s; with refreshed profiles for the consumption, the
production and the prices that cover the prediction horizon. Once the process is over the optimal values
Pba,+* and Pba,”* are used to compute the storage controls Py, s (Eq.14). Those controls are sent to the
BESS controller as a table. Then the controller reads at each time step the corresponding reference value to
send to the battery converter.

Pbalhrej (t) = Pb:! “Pb;I Eq.14

3.4 Emaulated BESS

The proposed management method of the system is based on a MPC approach with a receding
horizon implemented in Volttron. The optimal controls generated by the process described in the previous
section are sent to the BESS whose behavior won’t correspond to the one forecasted due to the
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simplification of the model in GAMS (linear formulation with constant efficiencies). Just like the PV arrays,
the BESS is not yet installed on the University of Washington campus. Thus, in order to take into account
the deviations of the battery characteristics (especially the SOC) with the prediction a more detailed model
is considered.

3.4.1 Shepherd model for battery cells

The battery cells are represented using the Shepherd model that predicts the component behavior
based on the discharge curve at constant C-rate advised by the manufacturers. The model compute the cell
voltage V (in Volt) depending on the discharge current 7 (in A) and the exchanged amper-hours Q (in Ah).
Fig.124 displays a standard discharge curve for any electrochemical storage cell. After a first exponential
decrease, the voltage linearly evolves with the delivered capacity between 80 % and 20 % of the nominal

"capacity (Qnom in Ah). At the end of the discharge curve (typically under 20 % of SOC) the voltage
significantly drops to its minimum value [Shepherd 65]. Typically for Li-Ion cells the cell voltage is in the
range 2.7 V — 4.0 V with an average value of 3.6 V in the linear area.

a) nominal area b)

N

& full charge voltage

exponential area

]
oy

=
Q|
>

IR
il

nominal voltage

Cell voltage (V)

nominal capacity

Delivered capacity (Ah)

Fig.12: Cell representation — a) discharge curve — ) Shepherd mode; — b) Relative Error

The Shepherd representation of the cell consists in a variable voltage source E in serial with a constant
resistance in a generator convention. As shown on Fig./2b a faradaic efficiency is added to the base model
to represent the electron losses (especially during the charge). For the Li-ion elements that value is close to
1 [Martha 12], a constant #r = 99.7 % is chosen here for charge (1 / nr for discharge). [Tremblay 09]
improved the Shepherd model originally developed for lead-acid batteries in order to make it compatible
for Li-Ion cells in charge (I < 0) and discharge (I > 0). The function predicting the voltage source value E
with the current and capacity is rewritten according to Eq.20. The main assumptions of the model concerns
the internal resistance supposed to be constant and the Peukert effect that is not considered. Also the impact

~ of the temperature and the self-discharge are not considered.

I>0=V =E~RI-K,.Q. Qoon __ K,.I. Qoon_, 450
Qnom - Q Qnom - Q Ea.15
o Orom -8 e
I<0=V=E-RI-K, Q.- K J—=nmon __ i fe ¢
Qnum - Q Q -0.1 'Qnom

With:
®  F,: battery constant voltage (V)
= R :internal resistance (£2)
= 4 :exponential zone amplitude (V)
= B :exponential zone time constant inverse (Ah™")
= K, K., :polarization resistance (Q2)
= Ka, K. ‘polarization constant (V/Ah)
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As already explained and shown on Fig./.2b the capacity delivered by the battery is computed by

considering the faradaic efficiency (Eq.16). Then Eq.17 is used to estimate the SOC of the cell that depends
on the remaining capacity that can be delivered.

1<0=> 7, =99.7%

1
1= 1L.dt with
e ”Fxl . {1>0:>7;F=1/99.7% Eq.16

SOC(t) =100 x Loen = 20)

nom

Eq.17

3.4.2 Parameters fitting

Normally the parameters of the model can be extracted from the discharge curves. Here the choice is
made to fit the parameters using the least square minimization tool embedded in Matlab in order to find the
values for Ey, 4, B, R. As described in [Tremblay 09] the polarization constant in charge and discharge are
supposed to have the same values denoted as K here. Also note the BESS that is going to be installed on
site will be composed of LGchem modules. Unfortunately the discharge curves are not available for the
corresponding cells. Thus other products with extensive datasheet are considered with the Li-ion cells
VLAS5E used in the solutions for stationary storage provided by SAFT (See Appendix D). The corresponding

nominal capacity is equal to 45 Ah with a cell voltage between 2.7 V and 4.0 V and the discharge curves
are given at 22.5 A (C/2),45 A (1C) and 100 A (>2C).

a) b)

discharge at 22.5A—0.7% |

1
i

’ discharge at

Cell voltage (V)
Cell voltage (V)

30 35 40 45 0 5 10 15 20 25 30 35 40 45
Delivered capacity (Ah) Delivered capacity (Ah)

Fig.13: Fitting relative errors — a) fitting discharge at 1C - b) fitting discharge at C/2, 1C and 100A

Two fitting strategies are considered and the obtained solutions are compared in term of relative error
computed similarly to Eq.6. At first only the discharge at nominal c-rate is considered. The obtained error
is very low for the discharge at 1C but it increases a little when predicting the discharge at C/2 and 100 A
(Fig.134). Another approach consists in fitting the three curves at once. In this case the error for the
discharge at 1C is slightly higher but it decrease significantly for C/2 (Fig.135). Table 2 displays the values

of the parameters for the two fitting strategies. In the following parts the results for the fitting of the three
curves will be considered.

Table 2: Energy rates

Parameter Fitting 1C Fitting C/2, 1C and 100 A
E,(V) 3.50 3.43
R(Q) 2.5.10° 2.8.10°
A (V) 0.50 0.57
B(Ah™) 7.51.10% 4.96.10
K (© and V/Ah) 3.27.107 2.74.10°
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Once the parameters are computed the model for a single cell can be used to simulate the behavior
of the product with different current profiles. Appendix E displays the results obtained for charge/discharge
a 1C and estimates the round trip efficiency of the considered cell. Especially the charge mode is
investigated with a saturated voltage and decreasing current introducing a time of fully charge longer than
the one computed with a standard ideal model.

3.4.3 From cells to battery

For the design of energy storage system, manufacturers define elementary module usually composed

.of cells in series. Different modules are then arrange in parallel and series to construct the battery rack

depending on the desired overall voltage and current rate (Fig.14). The proposed BESS that is going to be

installed on the UW campus is given with a rated energy of 325 kWh and a power conversion system with

a maximum power of 100 kW. Note that in those conditions the battery would be operated at lower c-rates
which could allow reducing the losses while increasing the system lifespan.

Cells Modute Battery rack

Fig.14: Battery modules

To emulate the overall BESS the previously modeled cells are associated in series Ny and parallel
Nparaassuming that all the components are balanced in terms of voltage and state of charge. The SAFT cells
is given with a specific energy of 162 Wh at the nominal voltage (3.6 V). With no additional information
on the BESS design, the choice is arbitrary made to use Ny = 200 and Ny, = 10 for a battery nominal
voltage of 720 V and an estimated rated power of 324 kW. Thus starting from the references controls return
by the optimization P s the reference current for a single cell is computed using the voltage for the
previous time step. Then the developed model predicts the new value for a single cell voltage and refreshes
its SOC which is assumed to represent the battery SOC. The other battery parameters I, and V3, are then
computed following the model architecture on Fig.15. Note that a constant efficiency is added to represent
the losses within the converter (9. = 95 %).

VXN ) Vs
. [ pura{
v
Potrer P s0mp, ol P r 11 Cell Model & ' 1,
I P — X;\‘, L Current correction 1 ’IJ IxN,,. || <l
Pra_reg <07 Pras p € Prar_yeg X e pare if needed
o 100x Loen =€ SOC

nom

Fig.15: Model architecture for the battery

The proposed architecture requires to compute the cell/battery voltage for the initial time step. The
open voltage versus SOC curve provided by the manufacturer is used to compute the initial voltage V,?,,,
with the initial state of charge SOC;,; of the cells using Eq.18.

=%x0.7+3.3 Eq.18
100

init
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4 SIMULATIONS

4.1 Case study

The proposed management method with the implemented models described in the previous section
is simulated for a day of September 2016 with the load and production profiles displayed on Fig.16. For a
baseline case without PV nor battery, the peak consumption is 898 kW for a total purchase energy of
20 MWh. The optimization is performed every Tyepess = 30 min and the prediction horizon stops at the end
of the day with forecast profiles (production, load and prices) ending at midnight. Note that the developed
forecast tool for temperature and solar radiation require the past time steps measurements to predict the
short term values. Thus when simulating a single day the management process cannot be start at 0:00. Here
the choice is made to “switch on’ the MPC controller at 2:00.

) 60%)
45
=
R < 30
3 : s
Consumption 20 MWh - 15
Peak 898 kW
750(5‘7 6 12 18 24 0() 6 12 18 24
Time (h) Time (h)

Fig.16: Test profiles — a) Load — ) PV production

In the MPC controller the simple linear model of the BESS is set with Piar ma=Ppar_ min=100 kW with
a maximum energy Ej mar €quals to 325 kWh. Also both charge and discharge efficiency (37pr and #par )
are set to 90 %, SOC,4e = 100 % and SOC,,;, = 20 %. Also the BESS is assigned with an initial SOC of 50%
and an additional constraint is introduced to ensure that its final value is over ( SOC(24 h) > SOC(0 h) ).
That constraint allows avoiding a fully discharged battery at the end of the day and returning to the initial
value favors the conservativeness of the operation.

4.2 Results

= Plogg Froaa™ Prv = Prosa™ Py = Prat = SOC = Py,
900 ; 100 ; cn 100
! : g : lﬂ ‘b) ;’:’? Night / day price
ul : — 80
3 s "
& ' M\« < 609
o | 8 . ;8
: BESS operaﬁon X CBESS Opération —3 ":40
! Jaunched at 2am launched at 2am
700 | ; e 100, =20
0 6 12 18 24 1000 6 12 18 24
Time (h) Time (h)

Fig.17: Results considering only the arbitrage — a) net load — b) BESS profiles
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A first simulation is performed while removing the peak consumption penalty in the cost function
embedded in the MPC controller (Eq.10). In that case the consumption tends to increase during the off-
peak period (until 6:00) with a full charge of the battery. Then when the prices for the purchased energy are
higher during the day, the BESS slowly discharges to its lower limit (i.e. 20 %) before the prices get lower
at 22:00 (Fig.17). At the end of the day the storage is then charge until reaching the specified value
SOC(24 h). On the displayed profiles the start time of the battery management can also be observed with
no controls sent to the storage until 2:00. ‘

Table 3: Simulation results

Simulation . " Purchase Energy ($) -~ Peak Penalty ($) Total ($)
Baseline — load 1313 1868 - (898 kW) 3131
Baseline — load and PV 1290 1795 - (863 kW) 3085
BESS - arbitrage 1286 2841 - (885 kW) 3127
BESS — arbitrage + peak 1288 1781 — (857 kW) 3069
BESS — arbitrage + peak + TS 1289 1917 - (921 kW) 3206

As summarized in Table 3 the cost for the purchase energy is reduced compared to a baseline where
only the load is considered. However 85 % of that decrement is cause by the PV production. With small
difference between day and night rates, the BESS operation only allows saving 4 $ more. The peak power
occurs during the off-peak period (the cost for on-peak is applied) and is higher than in a case where only
the load and the production are considered. Note that the penalty attached to the peak power is computed
here for the simulated day. Normally it is only applied for the highest observed values within the billing
period, typically a month.

T Pload - Pload_ PPV - Pbal ---SOC — Pba:
900 a) 4 N 60 5) 100
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-1«.‘?““—
%l‘, :‘»
P, bat (kW)
o 3
<
3 o
SOC (%)

N . {
800 [f ¥ 17 Lj} ¥ies

Y » 30— 55
739, 6 12 18 4 6 6 12 18 240

Time (b) . Time (h)
Fig.18: Results considering arbitrage and peak penalty— a) net load — b) BESS profiles

Another simulation is performed while considering the peak penalty in the objective function of the
MPC controller. In that case the observed peak power is significantly decrease to 856 kW with a cost for
the purchased energy slightly increased and a lower total bill (Table 3). Nate that compared to the previous
case, the BESS is not used in all the available range with a SOC that does not reach the upper and lower
bound (Fig.185). Indeed increasing the SOC would led to a higher net power and a more significant
corresponding peak consumption. Then the penalty paid would be more important than the saving obtained
with a more efficient arbitrage between off-peak and on-peak periods.
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S
S
&
750 S\
TSat 8 am and 7 pm
700 6 12 18 24
Time (h) Time (h)

Fig.19: Results considering arbitrage and peak penalty with TS — a) net load — b) BESS profiles

A last simulation considers the occurrence of unpredicted transactive signals, Azs = —10 $/kWh at
8:00 am and Ay¢ = 10 $/kWh at 7:00 pm. Those values are added to the rates profile for three consecutive
time steps (i.e. 15 min). The corresponding profiles are displayed on Fig.23 with a BESS that proves able
to respond to the transactive signals. The battery absorbs and provides power that reaches the specified
bounds Ppus mex and Pyy min While speeding up the charge/discharge. Note that the peak power for the net
consumption is much higher than in the previous simulations (911 kW) with a total cost significantly
increased (Table 3). Thus the retribution for an increased consumption (i.e. negative TS here) should
compensate the penalty for the corresponding peak. Otherwise the battery would operate at a charge rate
that would limit the net consumption to the predicted maximum possible value.

4.3 Discussion

4.3.1 Forecast refreshment

An additional set of simulations is performed considering the peak penalty without TS and varying
the refreshment period for the MPC controller. As shown in Table 4 changing the value of the intra-hourly
refreshment does not have a significant impact on the obtained results. Also the corresponding
performances (in terms of cost) are significantly better than the results observed with no refreshment of the
optimal control (i.e. Trepess = 24 h with the optimization performed only one time). However refreshing the
optimization does not allow in any case reaching the minimum peak power computed at 824 kW with the
given measured profiles. Indeed the refreshment process does not allow to perfectly manage the load and
production uncertainties.

Table 4: Simulation results with different values of T,cfren

Tefresh 5 min 15 min 30 min 1h 24 h

Purchase Energy (§) 1288 1288 1288 1288 1290
Peak Penalty (§) 1785 -858 kW 1780—856 kW 1781 —857kW 1781 —857kW 1798 — 864 kW

Total ($) 3073 3068 3069 3069 3088

In order to improve the performances of the proposed procedure a real time controller can be added
to the rolling windows optimization. The simplest way to cancel the uncertainties compared to the predicted
refreshed profiles would consist at correcting the BESS real time control as described in Eq.19.

Pbal_rd <« P;ml_rq’ + F;oad(l) - PPV@) - ])](}:ad(t) + P;V(t) qu9
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A last new simulation is run with T.pes and the simple real time correction described above. Once
again no TS in considered. The observed final cost is the lowest one obtained for the tested day with 3046 $
total and a peak power reduced from 857 kW to 845 kW. Also the corresponding net power profile appears
to be smoother compared to the previous studied cases with constant values over refreshment period of
30 min here (Fig.204). As the uncertainties are non-biased the deviations of the SOC compared to a case

with no real time correction are not significant (Fig.205).

,,,,,,, Proga™ Ppy— Ppar J— Pioaa= Ppy = Ppar
= Proad without real time correction with real time correction
900(4) TN 100{ 7]
s %

o 850 S 80
< S
o “

800 60 ¢

750 6 12 18 24 40 ¢ 6 12

Time (h) Time (h)

Fig.20: Results with and without real time correction — a) net load — b) SOC profiles

4.3.2 BESS limitations

As already mentioned the BESS is represented with a simple linear model in the MPC controller.
Thus is some cases the actual equipment would not be able to meet the sent controls in some cases. Fig.21
displays the profiles for the first case simulated where only the arbitrage was considered. Especially at the
end of the storage charge before 6:00 am the purchased power cannot meet the references due to the battery
dynamics at higher SOC values (see Appendix E). In real time with actual modules, such a phenomenon
could occurs when the battery management system would limit the use of the storage with maximum real
time charge/discharge current, cell voltage imbalances or overheating.

--- Optimal controls -~ Final Py, --- Linear Model SOC ~ — Final SOC
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100 55 100
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-100, 6 12 13 24 09 6 12 18 2
Time (h)
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Fig.21: Results with and without real time correction — a) net load — 5) SOC profiles
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CONCLUSIONS

This report presents the use of a multi-agent platform to implement a management strategy for a
BESS associated with PV production. Especially attention has been paid to the generation of consumption
and production forecast that are used by the MPC controller when the optimization is performed on a rolling
windows. For the tested day the proposed approaches proved itself performant, especially with a decreased
net load that led to a significant reduction of the electrical bill. As discussed the BESS operation can be
enhance especially by introducing a real time controller that would allow smarter operation (follow a target
power, smooth the net load). A basic example has been given in the document but other approaches should
be investigated. Among the possible further work the main task is obviously to deploy the proposed strategy
on the real system using the Volttron platform when the equipment will arrive.
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APPENDIX A: PV MODULES DATASHEET AND PV SYSTEM
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APPENDIX B: SOLAR ANGLES

This appendix presents the different steps to the compute the solar angles (elevation a, and azimuth
a,) that are used to correct the solar radiation on a collector with given tilt 6, and orientation 6,. The
corresponding equations (Eq.20 to Eq.24) are taken from [Masters 13].with the following parameters:

= J:solar declination

= [ :latitude

= pn.:day number

= H:hour angle

m g, :elevation angle

*  a,:azimuth angle (< 0 for West from South, > 0 for East from South)

5 =23‘45xsm(—§%x(n—81] Eq.20

H=15° per hour before solar noon (mind time shift summer/winter time) | Eq.21

sine, =cos Lxcosd xcos H +sin L xsind Eq.22

sina, = cosoxsin A ' Eq.23
cos

If cosH < 225 then a, < 180° — ¢, Eq.24

With the previous equations it becomes possible to plot the sun path diagram depending on the
geographical position. Fig.22« displays the obtained curve in Seattle for seven different day from June to
December with a maximum elevation angle moving from 20° to 65°. On Fig.225 the corrected factor for
the irradiance on a collector is plot for different tilt and orientation angles (positive orientation, East from
South). For the considered day in October the optimal tilt corresponds to 57° with variations from 0.5 to 1.
The observed effect of non-optimal orientations is around 10 % for the tested values.

a) h)  — g,=0° e @), = 4200
S mm6,=7F100
& 60
2
v
2 45 S
® i
> : .
= e NS . Day: October 17* at noon ___
|15 - 0,=33%and a,=0°
0 SR 0.5 | : -
-150 -100 -50 O 50 100 150 0 15 30 45 60 75 90

Azimuth angle (°) Tilt angle (°)

Fig.22: Solar curves — a) solar position for different day — b) angle of incidence on a collector with
different tilt and orientation angles
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APPENDIX C: KNN PARAMETERS

This appendix investigates different parameters for the short term forecast tool using the k Nearest
Neighbor method for PV production. Thus for both the temperature and clarity index predictors, different
test are performed with several values regarding the number of considered nearest neighbor (k) as well as
the length of the measurement used to compute the forecast (z;,5). The RMSE and relative error are compute
considering 500 samples within the test period (September 20616) with different prediction horizon Tyeq.
Fig.23a and Fig.235 display the errors plot by varying & and with 7;,;fixed at 30 min for the solar radiation
predictor. As expected the observed error tends to increase with the prediction horizon with values around
20 % for 30 min ahead forecast. Increasing the number of considered nearest neighbors improve the
performance with a limit values reached for k£ = 10. Keeping that value and varying 7;,; from 15 minto 2 h
have less significant impact on the computed errors that slightly increase when longer measurement profile
are considered to perform the prediction (Fig.23¢ and Fig.234).
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Fig.23: Solar radiation predictor— a) RMSE with different £ — b) relative error with different £ — ¢) RMSE
with different 7j,¢ — d) relative error with different 7;,¢

For the temperature the observed errors are much smaller. The impact of £ and with 7, fixed at
30 min is more random than for the clarity index (Fig.24a and Fig.245). Here again increasing 7j,.tends to
slightly increase the error (Fig.24¢ and Fig.24d). In the presented work £ is set to 10 and z,gat 15 min (i.e.
3 time steps here). Note that finding optimal value for predictor model could also be formulated as an
optimization problem.
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Fig.24: Temperature predictor— a) RMSE with different k — b) relative error with different & — ¢) RMSE
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APPENDIX D: LI-ION CELL DATASHEET
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APPENDIX E: LI-ION CELL MODEL

This Appendix presents the results obtained when using the Li-on cell model developed in the
document for the 45 Ah SAFT cell. At first a full cycle 0 %— 100 % — 0 % at 1C (i.e. 45 A) is simulated
considering Eq.20 to Eq.17 while bounding the cell voltage between 2.7 V and 4 V. Fig.25 displays the
corresponding profiles for the voltage, the power and SOC. The power allows computing both charged and
discharged energy that are different due to the distinct voltage trajectories. The ratio between those values
gives the round trip efficiency which is 91 % for a cycle at 1C. The performance increase with a low c-rate
(95 % for a C/2 cycle) and decreases for higher currents (83 % for a 100 A cycle - >2C).

50 4
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Fig.25: Cell cycling profiles — a) current — b) voltage — ¢) power — d) SOC

In the previous simulation the cell is charge in a little more than one hour - 3611 considering the
faradaic efficiency. The corresponding SOC moves for 0 % to 100 % with a unrealistic constant current
even when the voltage is controlled (at 4 V for instance) for safety reason (venting). In practice the current
decreases (in magnitude) when the maximum cells voltage is reach and controlled to its maximum value.
Thus the charge is slowed down and reaching an actual SOC of 100 % takes much more than an hour even
for a c-rate equals to one. Then if a reference current 1., is desired, the actual value / as to be corrected as

in Eq.25.
L, <0=V=E,~RI, k0L gy Dm0
Qnom - Q Q - O‘ 1 'Qnom
E V-K Qnom -B.Q
L~V —KQ.—="" 4 fe Eq25
V>4=>V <4 and I =max /,,, o ’
R+ K. Qnom
Q -0.1 ‘Qnam

The comment addressed above can be transposed to the discharge mode. Indeed if the reference
current 1,.,r would led to a voltage under the lower bound its magnitude is reduced in order not to damage
the cell. Thus the power deliverd by the battery is lowered and the discharge is slowed down compared to
the previous test with the corrected equation Eq.26. '
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Fig.26: Cell cycling profiles with charge control — a) current — b) voltage — ¢) power — d) SOC

Fig.26 shows the results obtained for a cycle at 1C (i.e. 45 A) with the charge controller with two
charges at 95 % and at 99.5 %. As previously the charge current is constant at the beginning of the cycle.
Then when the maximum voltage is reached it is maintained to its upper bound (Fig.265) while the current
decreases following a negative exponential trajectory (Fig.264). The charge is slowed down, at 1C it takes
1h30min to reach 95 % and more than 2h30min for 99.5 % compared to one hour in a standard ideal model
(Fig.26d). Also at the end of the profile the simulation the discharge current magnitude is decreased to
avoid critical under-voltages (Fig.26a) with a discharge slowed down (Fig.264). Note that the computed
values for round trip efficiency are consistent with the one previously estimated at 91 % for a cycle at 1C.

University Of Washington, Department of Elecirical Engineering , 31



BESS Operation

October 2016

REFERENCES

Kantamneni 15

Zhang 16

Labeodan 15

Haack 13

Khamphanchai 14

Hao 16

Darras 10

Tremblay 09

Bird 81

Masters 13

Diagne 13

Perez 07

Pedro 12

Lora 02

Paoli 10

W .Kantamneni, L. E.Browna, G. Parker, W. W.Weaver, “Survey of multi-agent systens
for microgrid control”, Engineering Application of Artificial Inteligence, Vol 45, pp 192-
203, 2015.

X. Zhang, A. J. Flueck, C. P. Nguyen, “Agent-based distributed volt/var control with
distributed power flow solver in smart grid”, IEEE Transactions on Smart Grid, Vol 7, pp
600-607, 2016.

T. Labeodan, K. Aduda, G. Boxem, W. Zeiler, “On the application of multi-agent systems .

in buildings for improved building operations, performance and smart grid integration — A
survey”, Renewable and Sustainable Energy Reviews, Vol 50, pp 1405-1414, 2015.

TN. Haack, B.A. Akyol, S. Katipamula, R.G. Lutes, “VOLTTRON Lite: Integration
platform for the transactional network”, Report Pacitic Northwest National Laboratory,
2013.

W. Khamphanchai, A. Saha, K. Rathinavel, J.N. Haack, B.A. Akyol, “Conceptual
architecture of building energy management open source software (BEMOSS)”, Innovative
Smart Grid Technologies Conference Europe (ISGT-Europe), 2014.

H Hao, C.D. Corbin, K. Kalsi, R.G. Pratt, “Transactive Control of Commercial Buildings
for Demand Response”, IEEE Transactions on Power Systems, 2016.

C. Darras, S. Sailler, C. Thibault, M. Muselli, P. Poggi, J.C Hoguet, S. Melsco, E. Pinton,
S. Grehant, F. Gailly, C. Turpin, S. Astier and G. Fontés, —Sizing of photovoltaic system
coupled with hydrogen/oxygen storage based on the ORIENTE model, International
Journal of Hydrogen Energy, Vol. 33, pp. 3322-3332, 2010.

O. Tremblay, L.A. Dessaint, “ Experimental Validation of a Battery Dynamic Model for
EV Applications”, Worl Electric Vehicul Journal, Vol 3, 2009.

R.E. Bird, R. L. Hulstrom, “Simplified Clear Sky Model for Direct and Diffuse Insolation
on Horizontal Surfaces”, Technical Report No. SERI/TR-642-761, Golden, CO: Solar
Energy Research Institute, 1981.

G.M. Masters, “Renewable and Efficient Electric Power Systems, 2™ Edition”, Wiley,
IEEE Press, 2013.

M. Diagne, M. David, P. Lauret, J. Boland, N. Schmutz, “Review of solar irradiance
forecasting methods and a proposition for small-scale insular grids”, Renewable and
Sustainable Energy Reviews, Vol 27, pp. 65-76, 2013.

R. Perez, K. Moore, S. Wilcox, D. Renne, A. Zelenka, “Forecasting solar radiation —
Preliminary evaluation of an approach based upon the national forecast database”, Solar
Energy, Vol 81, pp. 809-812,2007.

H.T.C. Pedro, C. F.M. Coimbra,” Assessment of forecasting techniques for solar power
production with no exogenous inputs”, Solar Energy, Vol 86, pp. 2017-2028, 2012.

C. Lora, J. Riquelme Santos, J. Riquelme Santos, A.G. Exposito, and J.L. Martinez Ramos,
A Comparison of Two Techniques for Next-Day Electucrcy Price Forecasting, IDEAL
2002, LNCS 2412, pp. 384-390, 2002

C.Paoli, C. Voyant, M. Muselli, M. Nivet,” Forecasting of preproccsscd daily solar
radiation time series using neural networks™, Solar Energy, Vol 84, pp. 2146-2160, 2010.

University Of Washington, Department of Electrical Engineering

32



BESS Operation October 2016

Shepherd 65 C.M. Shepherd, “Design of Primary and Secondary Cells - Part 2. An equation describing
battery discharge”, Journal of Electrochemical Society, Voll12, pp 657-664, 1965.

Martha 12 S.K. Martha, J. Nanda, G.M. Veith, N.J. Dudney, " Electrochemical and rate performance
study of high-voltage lithium-rich composition: Lil.2Mn0.525Ni0.175C00.102", Elsevier,
Journal of Power Sources, Vol 199, pp 220-226, 2012.

University Of Washington, Department of Electrical Engineering 33



W UNIVERSITY of WASHINGTON

University of Washington
Department of Electrical Engineering
185 Stevens Way

Paul Allen Center - Room AE100R
Campus Box 352500

Seattle, WA 98195-2500




