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ABSTRACT

It has been extensively shown that smart controls of building loads, especially the Heating,
Ventilation and Air-Conditioning (HVAC), can enhance power systems’ management, facilitate energy
savings and increase the hosting capacity for renewable energy sources. In addition to conventional
demand response programs, a new paradigm called “transactive control” has emerged. This paradigm
relies on market mechanisms in a multi-agent framework. This report describes the implementation of
this framework using a bi-level optimization of the operation of the HVAC of an existing building. On
the end-user side a multi-step optimal control performs arbitrage among cost, comfort and the ability to
respond to transactive signals. On the utility side an outer optimization loop is introduced to find the
most appropriate price signal to send to the building in order to encourage it to follow a predefined power
profile. An artificial neural network (ANN) is used to implement the Model Predictive Control (MPC)
while a finer model in EnergyPlus simulates the building control and allows computing the prediction
error. Simulations are performed with different settings of the building. Finally, a case with several
buildings is investigated.
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ACRONYMS

ANN :  Artificial Neural Network

ASHRAE :  American Society of Heating Refrigerating and Air Conditioning Engineers
DR . Demand Response

E+ Energy Plus / Energy+

GAMS . General Algebraic Modeling System

GD . Greedy Method

HVAC :  Heating, Ventilation and Air-Conditioning
MILP : Mixt Integer Linear Programming

MLP : Multi-Layer Perceptron

MPC : Model Predictive Control

PMV . Predictive Mean Vote

PSO :  Particle Swarm Optimization

RMSE ¢ Root Mean Square Error

SEB :  Science Engineering Building

TCL : Thermostatically Controlled Load

TE : Transactive Energy

™Y :  Typical Meteorological Year

TS : Transactive Signal
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LIST OF SYMBOLS

r Zone temperature °C
T et Zone temperature set point oc
Tom Outdoor temperature °c
Tror Comfort temperature °c
Prvac HVAC power kW
U Building Utility Function -
ac Coefficient attached to the cost minimization -
ar Coefficient attached to the comfort maximization -
ag Coefficient attached to the flexibility maximization -
T Price-like transactive signal p.u.
N, Number of zones -
F, Neuron activation function -
Tstan Starting time step for the MPC optimization h
Tend Ending time step for the MPC optimization h
Tsmp Prediction horizon (in number of steps) -
N; Number of input neurons -
N, Number of hidden neurons -
N, Number of output neurons -
Piorger Power to follow for the aggregating entity kW
Prarger corr Corrected power to follow for the aggregating entity kW
Pinac meas Simulated measured HVAC power kW
Ry Thermal resistance ocikw
Cy Thermal capacitance kwWh/”C
COP Coefficient of performance -
Tout max Design outdoor temperature e
Tiet min Minimum design set point oc
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1 INTRODUCTION

1.1 Motivation and Architecture Overview

According to the latest survey conducted by the U.S. Energy Information Administration,
residential and commercial buildings account for 40 % of the global energy consumption [EIA 16]. In
commercial buildings the Heating, Ventilation and Air-Conditioning (HVAC) systems represent about
45% of the energy consumed. Optimal management of HVAC in building is thus perceived as a
significant opportunity for reducing energy use and'to enhance the efficiency of the power system as a
whole. As reviewed in [Kok 16], many approaches are investigated to control buildings from the utility
side. While conventional Demand Response (DR) programs (Fig.14) have proven somewhat effective,
one of the main drawback is that the full response of the devices is not available because their actual state
is not known. Two-way communications approaches allow more flexible controls and smarter operations
(Fig.1h). However, these methods quickly reach the limits of computational capabilities because their
complexity increases with the number of actors. Furthermore, such centralized approaches are limited by
privacy issues if a supplier needs to model the behavior and preferences of the building users.

a) b)
1. State information

Aggregating | _ DR signals Aggregating
e I |

2. Optimal controls

C) 2. Aggregated d) 1. Iteratively Search the optimal TS profile
{/ demand curve “\ la. Aggregating entity sends TS profile
. \ 1b. MPC devices send estimated power profile
1. Bid demand curves _ M srerations

Aggregating Aggregating
i PN T i P

4. TS sent to vevices
. . 2. Optimal TS sent to devices |
S h’ _3. Determine the appropriate TS

Fig.1: Building control architecture - ) Demand Response - b) Central Optimization — ¢) Bid-
auction market — dj Chosen architecture for multi-step ahead transactions

L4 MPC devices

Transactive Energy (TE) provides a framework where supply and demand actors interact using a
bid-auction mechanism with a price-like signal called Transactive Signal (TS). The end users submit
their bids in the form of demand curves that map their expected consumption to the TS. The aggregating
entity then matches the overall demand curve with a supply curve or a supply objective and constraints.
The resulting TS is then sent back to the devices that act according to the received value (Fig.1c). The
first proof of concept was the Olympic Peninsula Demonstration project [Hammerstrom 07] with the
control of the space heating of 112 houses using gateways that supported two-ways communication.
Since then many investigations have been performed to study the possibility to provide specific ancillary
services such as frequency regulation or spinning reserve [Subbarao 13]. One of the main advantages of
this multi-agent approach is its scalability. Since the proposed framework considers different actors/users
distributed in the grid, then it can also be applied to describe the interaction between the equipment within
a given system. For instance [Hao 16} designs a double auction market within a building to optimally
control the HVAC loads considering the electricity, water and gas markets.

In the transactive framework, the market clears at every time step and the corresponding controls
are sent to the devices using an appropriate TS. This report investigates a new, multi-step transactive
approach. Rather than performing an optimal multi-hour scheduling, the objective is to improve the sub
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hourly decision making by estimating the state of the system over a longer period of time. For instance a
given amount of energy at time 7 will correspond to a higher price if it could lead at a critical situation for
the next time steps. In that multi step ahead framework, time-dependent TS are generated by considering
the system behavior over a receding horizon (15 min in the simulation with a time step of 5 min). Because
the demand curves are not formulated explicitly, an iterative search method is used on the aggregating
entity side to find the optimal TS profile that have to be sent to the devices (Fig.1d).

This multi-step transactive approach is combined with a Model Predictive Control (MPC) on the
building side and the approach is tested on the HVAC system of the System Engineering Building (SEB)
on the Pacific Northwest National Laboratory (PNNL) campus in Richland, WA. The behavior of the
SEB is simulated using a model of this building developed using the Energy Plus tool. As in [Ma 11}, the
zone temperature set points T, depending and the objective to follow (cost minimization, comfort, etc)
are computed using MATLAB®. The controls are sent to EnergyPlus which then returns buildings
information for the corresponding time step including the building HVAC consumption P, and the zone
temperatures 7° (Fig.2). The outdoor temperature T, is also an output of Energy Plus which performs the
simulations based on TMY data. A co-simulation MATLAB/Energy+ tool [Bernal 12] [Zhao 13] provides
the environment for these simulations.

To ()

MPC with Virtual Building

simplified model — -
S—" | (R RURED Y < !

Fig.2: Co-simulation Matlab/Energy Plus

1.2 Organization of the report

= Section 2 describes the model of the Systems Engineering Building (SEB) using Artificial
Neural Networks (ANN5s) to predict the energy consumption based on the outdoor temperature
and the controlled set points.

= Section 3 presents in detail the MPC strategy which achieves a trade-off between energy
savings and comfort. An additional component is introduced in the utility function to
incorporate the building’s willingness to respond to incentives.

= Section 4 describes the implementation of the transactive framework using a bi-level
optimization that optimizes the TS profile in order to follow a predefined profile on the supplier

side. Different building preferences are investigated.

= Section 5 considers the management of multiple buildings.

University Of Washington, Department of Electrical Engineering 7
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2 SYSTEMS ENGINEERING BUILDING MODEL

2.1 Buildings Modeling

2.1.1 Modeling approaches

The first step of the presented work consisted in choosing an appropriate simplified model for the
building under study. A compromise is found between complexity and computation time before
integrating this model in the MPC strategy. Similarly to other areas of study such as weather forecasting
for renewable production, models used to predict a building’s energy consumption, and can be divided
into two main classes: physical models and statistical models [Foucquier 13]. Multi-zone nodal methods,
such as the algorithms embedded in EnergyPlus or TrnSys, are the simplest physical models. Good
accuracy can be obtained with an extensive description of the system (solar radiation, materials, HVAC
configuration, occupancy, efc.). However they do not provide an explicit model [Privara 13] and the
computation time makes them unfit for any MPC approach that would require several runs of the model
in order to find the optimal controls.

Statistical methods such as machine learning or Autoregressive Moving Average (ARMA) provide
simple representations of the system that can be integrated easily in an optimization process. Those
approaches do no required any physical information on the system under study and are based on the
implementation of a function deduced solely from samples of training data. This document therefore
describes an Artificial Neural Network (ANN) to predict the HVAC consumption. Two distinct ways of
using the ANNs for energy consumption can be identified. First they can be implemented purely for
forecasting purposes based on meteorological data and occupancy [Plaudel 14].  For instance
[Gossard 13] or [Magnier 10] use ANN forecast as a simple and fast model to optimize the building
structure considering energy saving and comfort criteria. The second way of considering the ANN for
building HVAC consumption is closer to the scope of this study. It consists in actually exploiting the
models to predict the energy consumption depending on the control strategy. Such models are then used
to show how a smart management of the building with optimal set points minimizes the energy cost while
fulfilling comfort constraints as in [Kusiak 14] and [Lee 15].

2.1.2 Multi-Layer Perceptron (MLP)

One widely used ANN structure for prediction is the feed forward multi-layer perceptron (MLP)
[Raza 15] whose architecture is shown on Fig.34 with 2 inputs neurons; one output neuron and a hidden
layer with 3 neurons. The term feed forward refers to the unidirectional flow of information from the
input to the output through the hidden layers.

University Of Washington, Department of Electrical Engineering 8
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a) b)
X;
X, g 7
N PR LLae
Y e Activation
% function

Input layer Hidden layer Output layer 1 inputs

Fig.3: Multi-Layer Perceptron — a) ANN architecture — b) Neuron architecture

Fig.3b shows the basic function of the neurons that performs a linear weighted combination of the
inputs with a bias. This sum is then passed thought an activation function F,. Typically for forecasting
purposes that function is a sigmoid (Fig.4«¢) or hyperbolic tangent (Fig.45). In this work the ANN used to
represent the building is to be modeled in GAMS to perform an optimization based on mixed integer
linear programming (MILP). Therefore, as in [Lee 15], a bipolar linear activation function is used to
simplify the implementation (Fig.4c). Here the number of inputs neurons is equal to the number of inputs
for the forecast models and those neurons are not subject to any activation function. The output neurons
that correspond to the prediction are implemented using a linear activation function.

August 2016

a) | b) | c) .
)= 2, F(7) = tanh(Y) F00) =i <
e R =1if 21
0.5 0.5} 0.5 F,(¥}y=~Y otherwise
& & &
pe 0 Y e 0
-0.5 -0.5 -0.5
-1 1 | -1
-5 -2.5 0 2.5 S -5 -2.5 0 2.5 5 -5 2.5 0 2.5 5
Y Y Y

Fig.4: Activation Funciion - a) Sigmoid - by hyperbolic tangent - ¢) bipolar linear

Four main steps are required to implement a neural network for prediction:

5

}. Determine the inputs

The first step is to select the appropriate set of input variables. For energy consumption forecast in
building many different sets of variables can be used: meteorological parameters {Macas 16] (solar
radiation, cloud covering, speed/direction etc.), HVAC operation details [Kusiak 14]
(temperature/pressure set points, chilled water temperature, valve positions, etc.). The order of the
autoregressive model can also be an adjustable input variable. In the present study the only exogenous

wind

variable considered is the outdoor temperature.
2. Determine the ANN architecture

The architecture of the MLP has then to be chosen in terms of the number of hidden layers and the
number of neurons in each layer (in most cases a single hidden layer is sufficient). Just like the set of

University Of Washington, Department of Electrical Engineering
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input variables, the MLP structure can be determined using an optimization or selection process
[Macas 16] and can have a strong influence on the accuracy of the prediction.

3. Train the ANN

The ANN training consists in finding the neurons weight and bias using back propagation methods
that minimize the RMSE or the absolute error by computing the Jacobian of the model error. The most
widely used method is the Levenberg—Marquardt Training {Yu 11] and its implementation in the
MATLAB Neural Network Toolbox is considered in the study. Note that the training dataset has a strong
influence on the final accuracy of the estimator.

4, Test the ANN

Once the network is trained an additional set of data is used to estimate the performance of the
generated model.

2.1.3 Maulti-steps ahead prediction

The objective of the study is to develop a MPC based on a multi-step prediction. When
considering multi-period forecasts three different approaches can be adopted for the model architecture
[Boné 02]. The first commonly used method consist in performing the estimation for the next time step
and feedback the results in the inputs of a regressive model until the desired prediction horizon is reached
(Fig.5a). This method is the simplest one but the accumulated error can lead to a strong divergence for
long horizons.

a) Exogenous variables b) Exogenous variables C) R . Predicti
- egressive ediction
Prediction
l - N l : / X+1) Model 1 X(r+])
) —> Regressive Preiilcnon X() —] Regressive . X(1)
N Model X(#+1) Maodel \ - Exogenous
! E Prediction variables
Xt+n) Regressive | | Prediction
Model n X(t+n)

Fig.5: Multi-steps abead forecast — ) iterative — b)Y multi step model — ¢) multi models

Another alternative is based on a global approach to forecast all the time steps in the prediction
horizon at once (Fig.55). In this case no guarantee is given that a model can fit properly the entire
horizon and some accuracy can even be lost for the first steps. The third option consists in one prediction
model per step (Fig.5¢). This requires a more complex implementation and training. The present work
only considers the first simple iterative approach.

2.2 SEB Model

2.2.1  Objective

The objective of this study is to develop a MPC strategy to control the Systems Engineering
Building on the PNNL campus in Richland, WA. The starting point of the work is an Energy Plus model
of this building with the following characteristics:

® 33 temperature zones identified

University Of Washington, Department of Electrical Engineering 10
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= 17 zones controlled using the temperature set points (N, = 17)
*  Building in cooling mode only (summer week considered)

= Simulations performed with a time step of 5 min

2.2.2 Model architecture

Some works in the literature give examples of multi-outputs neural networks that forecast both
temperature and humidity [Zaheer 04] or comfort index and consumption [Yuce 14]. In the present work
the choice is made to dissociate the temperature and the HVAC consumption models as well as the
outdoor temperature prediction {Macas 16] (Fig.6). Furthermore, the meteorological variables are limited
to the outdoor temperature only and every zone is modeled independently to predict the corresponding
temperature 7°. The only HVAC variables considered are the temperature set points for the seventeen
controllable zones. Those set points are then control variables in the MPC simulation. As mentioned in

the previous section, the outputs of the different models were iteratively used as inputs to perform the
multi-step prediction.

3 Iteratively inject the

o o o
outputs as inputs H E
E For each of the 17 zones +
T1=2)™ Fr L0 Toul) )
: T |- » o PO P |-
Toudlt= 17 M(;d’el " Tty T Model ’T(I: 7 .}Tz ( )m> Mgdel - Phw{H H
]:)ut(’) ™ ? T(f) * i set (’)_» !
? : T' 2 P hwxc(l) }
1 ! ' 1 4 !
H ! 1 § !

_____________________________________________________

Fig.6: Model architectare for multi-steps ahcad prediction

2.2.3 Training and Test Data sets

¢C)

4
set

7
Zone 102
r

August-01 August-02 August-03

pse/ (OC)
Zone 118

August-(01 " August-02 August-03

Fig.7: Samples of set points profile used to generate the training data sef

The Energy Plus model is used to generate sets of training data to fit the coefficients of the
temperatures and HVAC consumption models. Since the objective is to develop a model] that takes into
account various set points, the training data is produced by randomly changing the zone controls as shown
on Fig.7. The set points for each zone were independently selected using a uniform probability
distribution of the integers between 18 °C and 24 °C. The length of the period with constant set points
was also subject to a random distribution with durations from 1 time step to 24 time steps (ie.

University Of Washington, Department of Electrical Engineering 11
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respectively 5 min and 2h). The co-simulation is run and set points, zones temperatures as well as the
HVAC consumption profiles are saved to be used as training data sets for the models. The test data set
are generated the same way but with continuous values for the temperature set points. Note that in the
simulation the HVAC is assumed to be on all day.

»  Training data set: 5 simulations from August 01% to August 19™ - 27360 points
= Testing data set: 1 simulation from August 20™ to August 20" — 1728 points

2.2.4 Outdoor temperature

Since the MPC strategy is tested using the Energy Plus as a virtual representation of the building,
the choice is made to use the TMY data embedded in Energy+ to generate the outdoor temperature
forecast. A MLP with a single hidden layer with two hidden neurons is trained to minimize the RMSE
error with the input structure illustrated in Fig.6. The preliminary results show a really low value of the
RMSE for one step ahead prediction (ie. 5 min) (Fig.8) with a relative error of 0.08 %. This high
accuracy can be explained by the similarity between the outdoor temperatures of the training and testing
data sets, which both relate to the month of August and have smooth profiles.

-~ measured == one step ahead prediction
45/ RMSE = 0.04°C ’ '
o 35
& 25
1 1
15 August-20 August-21 August-22

Fig .8 One step abead prediction and measurcd outdoor temperature

Naturally the forecast error increases with the prediction horizon but the observed value remain
very low with a RMSE of only 1 °C computed after five hundreds of random test samples (Fig.92).
Fig.9b shows a one hour ahead prediction which illustrates the small deviation between the predictions
and the measured values.

a) b) . . g First prediction
swem RMSE == Mean Relative Error === measured == prediction ™ 5 i ahead
1.6 ‘ ; 4 36.1
! X
=
~ 12 £ 36038
g m g
i £ e
«x 0.8 " & 359
= T
~ ‘ 2
0.4 3 g 358
=
09 15 30 45 60° 3575 ¢ s 30 45 60
Prediction Horizon (min) Time (min)
Fig.9: Multi-Step prediction for 7,,, ~ aj Torecast error - b) sample of | h ahead prediction
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2.2.5 Zone temperature

Each zone temperature is modeled using the linear regression model given in Eq.1. The idea is to
consider the difference T°(2) — (1) as representative of the cooling energy and T°(f) — Tpu(?)
homogenous to the thermal losses with coefficients a and b between —1 and 0 into take account of the
zone inertia.

CIL W s 4 Wiy = T2 41 = T2+ ax (17 (0= T2, 0)+ b5 (17 (0 7,,,0)) Eq.1
As mentioned above, the models are designed for multi step ahead prediction.

Therefore, instead of fitting the coefficients to minimize the prediction error for the next

period, longer profiles are considered to minimize the error over the entire prediction

horizon.  Such approach avoids focusing on regression models similar to persistent

approaches that put a large weight on the coefficients attached to the temperature at time 1 to

predict the temperature at time ¢ + 1. A hundred samples of six time steps (i.e. 30 min) were

taken from the global training data for every zone. For each sample the training values for

the set points and outdoor temperatures are used to compute the 6 steps ahead prediction

77 Finally the fitting procedure aimed at minimizing the multi-period root mean square

sample *

error RMSE,,..;i , with the training profile 77" as computed as in £q.2. for each zone.
) g p

sample

~— measured == one step ahead prediction
24.0 |RMSE = 0.33°C ‘ '
~ Q225
o=
< e 210
-
S 195
8.0
August-20 August-21 August-22
24.0 IRMSE=0.16°C ' . '
% 22.5 ‘
%i: 21.0
N 19.5 : .
18.0 . .
August-20 August-2 ] August-22
I'ig. 10: One step ahead prediction and wmeasured zone temperaiure
1 100 6 5
_ pred fain
R'MSEmulli - 100x 6 x Z Z(Tsample (t) - Tsumple (’)) Eq.2
x sample=] 1=]

Fig.10 shows the results obtained for two zones for a one step ahead forecast with the
corresponding error for the whole test set (i.e. 5 days). The overall RMSE considering the seventeen
zones equals to 0.31 °C with a mean relative error of 0.92 %. As expected, the error increases when the
forecast are performed for longer horizon of time with a good accuracy for one hour ahead predictions
(Fig.11).

University Of Washington, Department of Electrical Engineering 13



Building Model and HVAC Operation August 2016

) b) First prediction
a e RMSE == Mean Relative Error — measured =~ prediction ~ 5 min ahead
0. 3 1 3 4 o 23.5 ‘
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Fig. 11: Multi-Step prediction for 7 - a) forecast crror - b) sample of 1 It abead prediction

2.2.6 HVAC consumption

The last step of the modeling directly refers to the prediction of the HVAC consumption. Note that
the multi-step forecast requires the output of the models described in the previous subsections for the
outdoor and zone temperatures. With the architecture illustrated in Fig.6 the ANN used to predict the
HVAC consumption has 36 inputs:

= 17 instantaneous zone temperatures

= 17 instantaneous zones temperature set points

® Instantaneous outdoor temperature

= HVAC consumption observed at the previous time step

Preliminary work requires training the Py, neural network with one hidden layer and different
numbers of hidden neurcns. Just like for the outdoor temperature, the Neural Network MATLAB
Toolbox is used to train the model using the Levenberg—Marquardt algorithm with random starting points
[Hagan 94]. The objective is to find the most appropriate architecture that minimizes the error for one
step ahead prediction. The results show that the number on hidden neurons does not have a significant
impact on performance. Contrary to what could be expected, increasing the number of neurons does not
necessarily improve the prediction. The observed error is actually greater for the largest number of
neurons considered (Fig.124). ). For the multi step forecast, the error is naturally greater for longer time
horizons. Increasing the number of neurons slightly improves the prediction for a 15 min ahead
prediction but the effect of any change in the number of neurons seems to have a random effect for
30 min and 1 h ahead (Fig.12b).

University Of Washington, Department of Electrical Engineering 14
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a) s RMSE === Mean Relative Error b) e 15N mee 30 Min e 60min
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Fig.12: Impact of the number of hidden neurons -~ @) 5 min shead - b) multi steps ahead

Another concern while investigating the neural network used to model the HVAC consumption is
to check that it respects the physical behavior of the system because statistical approaches do not
guarantee that this is the case. In the present study, after the training phase the resulting ANN is tested to
control that the power correctly evolves with the zone temperature controls. A baseline test day
corresponding to a constant set points of 21 °C is recorded using the MATLAB/Energy+ co-simulation.

Then at 1200 h the zone set points were progressively increased (or decreased) degree by degree (AT )

and the P, decrement (or increase) was analyzed to generate AP,,‘f for each zone. One thousand

vac
different neural networks with random numbers of hidden neurons (between 1 and 5) and random starting
points are trained. The best architecture is chosen according to Eq.3 after testing the model for the

baseline test day at 1200 h and generating the estimated AP,

nac

I AP
Ob,] : rnin Vz< Ivac (A sc/) APhr\Lqu ul ))/ —wae < O \7/ zZone Eq.3

& = set

Based on these results, a neural network with 5 hidden neurons is chosen. Fig.13 shows the AP e
for every zone compared to the reference values. While the physical behavior of the model complies with
the constraints AP, / ATy, <0, the behavior of some zones is not accurate for A7, =~ 3 e (Fig.134).
In particular, the effect of a change in the set-point for zone 14 is underestimated while it is overestimated
for zone 9. On the other hand, the results are more accurate for ATy, = + 3 OC. In this case, AP .. follows
the reference more closely for most zones (Fig.13b). Even if some errors appear significant, the baseline
power is 9.7 kW with a computed mean relative error of 7.6 % for the Py, prediction.

a) b)  Zome: 1t 2 3 4 56 7 8 9 1011 121314151617
1660 s reference 0 " T rnmm
s model
1200 =500
— " 2
3 =
S S
o &
E 800 2 -1000
a 1 == reference
<3 .
| ww model
400 l -1500
F1INTTY | VT [
Zone: 1 2 3 4 5 6 7 8 91611 121314151617
Fig. 13: Performance of the selected model regarding AP0 — @) ATy =~—3 OC by A, =+3 o¢
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Fig.14 shows the model behavior for the same baseline day but with different values of A7, It
can be observed that the Py, variations are greater for larger changes in the temperature set points. Also
the model globally respects the ranking of the most and least influential zones with positive and negative
ATy, For instance, zone 9 has the largest effect on the HVAC consumption while zones 1, 2 and 3 or 13,
14 and 15 have an average effect. Changing the control for zone 17 has no observable impact on Py
Indeed the restrooms associated with that zone are not controllable in the Energy Plus model [Hao 16].

a) B) Zone: 123456 78 910111213141516 17
500 0 e m ] ‘T“n‘"F 1[—""
- a7, 30C T
400 m AT =—20C
AT, =—1°C -400
£ 300 s
: ¢ 800
% 200 S . A]:_e’:+3OC
-1200 we Ay, =+27C
100 - , AT, =+19C
0 : -1600

1 23 456 7 8 91011121314151617

Fig.14: APsuse Lor the selected model- a) ATy, < °C — b} AT, > 0 °C

Fig.15 shows the error for the one step ahead prediction for a couple of days with a RMSE of
505 W and a mean relative error of 5.6 % while considering the full testing set of five days. Five hundred
random test samples were used to compute the error for the multistep forecast. Fig.16 shows that, as
expected, the error increases for longer time horizons. '
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Fig.15: Oune step ahead prediction and measurcd HYAC consumption
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Fig. 16: Multi-Step prediction for Py, - a) forecast error - b) sample of 1 h ahead prediction
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The forecast error increases with the prediction horizon and thus has a direct impact on the
performance of the multi-step ahead MPC control. Thus with the observed values (more than 20 %
relative error for 1 h ahead) it does not make sense to use such a model for a multi-hour scheduling with a
time step of 5 min. Even for sub-hourly prediction the prediction error can be significant. Aggregating
multiple buildings could reduce the error. This is investigated in the last section of this document.

3 MODEL PREDICTIVE CONTROL

3.1 Utility Function

At the building level, the model developed in the previous section is used to implement a MPC
strategy. As described before, the goal is to perform a multi-step optimization (from Ty, to Teng) of the
set points to minimize an explicit utility function. One of the first objectives is to minimize the cost while
fulfilling comfort constraints. This is not a new approach and there are many examples of such objective
functions in the literature. If the expression of the cost noted U is straightforward with a price profile T
(Eq.4) different ways of computing the comfort can be used. The simplest method to ensure comfort
consists in assigning bounds for the zone temperature as in [Kusiak 14} or [Ma 11]. Other approaches
refer to the Predictive Mean Vote (PMV), an index originally developed in [Fanger 72] that has been used
to create the ASHRAE standards (American Society of Heating Refrigerating and Air Conditioning
Engineers). A comfort scale [~ 3, 3] is defined considering metabolic rate, clothing insulation, air
temperature and humidity, air velocity, and the mean radiant temperature. [Fereira 12] develops a ANN
model to predict the PMV. The energy consumption is then minimized while ensuring that the index
remains within specified bounds. In this study the comfort constraint is directly included in the objective
function (noted Ur) as in [Lee 15] and is expressed as a deviation of the zone temperature from a
reference value T, (arbitrary set at 21 OC for all zones) (Eq.5).

Long
UC = zphmc (1) X T(T) Eq.4
=T .
]‘c‘"d NZ
Up= Y YIT°()-T, Eq.5
t=T 1y 21

siat

One of the objectives of the proposed control is the ability to respond to incentives. Considering
only comfort or cost could lead to a reduction of the range for the HVAC power. Thus a contribution of
this study is to include an additional component in the utility function to represent price elasticity. As
expressed in Eq.6 the elasticity e is a measure of the change in demand in response to a change in the
price of electricity from reference values indexed with “0” [Patteeuw 15].

0 0 z
T P, e . OT;
e= ~ % hvac —r = x sel Eq.6
thac or Tvel ot
_ Tod N, 0¥ aTAZ\/ :
ET Z Z TZON x a N - Eq.7
1=l 2=1 | % set T

Depending on the meteorological conditions and the occupancy of the building the range of
reachable values for the HVAC consumption can be reduced by moving the set points. Thus for some
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particular points the elasticity could be equal to zero over a wide range, which means that changing the
price would not have any significant effect on the energy consumption. To match the controllability of
the HVAC with the price evolution, the elasticity expression is rewritten considering the set points (Eq.6)
with the minimum (resp. maximum) set point corresponding to the minimum (resp. maximum) price in
cooling mode. The idea is to implicitly enforce the bid curve of the building as proposed in
[Schneider 11] and [Hammerstrom 07]. A term Ug is then added to the utility function working with
normalized values indexed “N”) (Eq.7).

Finally, all these components are integrated in a single utility function U, which consists of a sum
of the objectives, normalized using their expected maximum values. Weights ac, ar and ap are
introduced to give priority to one or the other component (Eq.8). TIi., is the time horizon for the
optimization in number of steps between Ty, and T,,s and the maximum expected temperature deviation
from the reference is 3 °C (set points between 18 °Cand 24 °Cand T, ver = 21 OC).

UC
T, end
ax
hvac X Z T(t )
1=T,

= start

Ur U
+ g X -
xN,x3 Ty * N Eq.8

step z

U=a,x +a; %

T,

step

Based in the manner in which the utility function is expressed, the priority coefficients refer to the
whole building and are shared by all the zones. However, the comfort and elasticity objectives could be
“discretized” with preferences set for each individual zone. For instance, priority could be given to some
zones to respond to incentives while other parts of the building would be unresponsive to the transactive
signal and set to provide maximum comfort. That aspect has no be studied in the present work but could
be part of further investigations.

3.2  GAMS Implementation

The MPC building controller is implemented in GAMS. The goal is to minimize the previously
defined objective function by finding the optimal temperature set points over time for all the zones T et
(i.e. N;xT,, decision variables) within specified bounds.

T set =argmin(U) s.t model equations

18<T 75 <24 Eq.9
Vie[l..T]
Vzel. N, ]

Constraints are introduced in order to take the model equation into account. In particular, the
implementation of the neural network require the introduction of a new set of continuous and binary
variables. The following paragraph presents a generic way to implement a Neural Network in GAMS.
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b)

N, inputs N, hidden neurons N, outputs o'y

Fig. 17: Feed-forward MLP - aJ architecture - ») activation function for hidden neurons

Fig.17 evokes the architecture of a feed-forward Multi-Layer Perceptron with a bipolar linear
activation function F,, for the hidden neurons. N, N, and N, are respectively the number of input, hidden
and outputs neurons. For the outputs neurons a pure linear function is considered. At each time step of
the prediction the instantaneous neural network inputs are stored in a vector X'. Then the first set of
constraints (N, xTy., constraints) referring to the model equations concern the linear combination of the
inputs noted X5 using the weights Wy, and bias B, of each hidden neuron (Eq.10). As shown on Fig.175,
for every neurons and at every time step, three continuous variable (X's;, X's; X'zs) and three binary
variables (v'}, 05, v'3) are introduced to perform a piece wise linearization of the activation function. Then
8 XN, T, constraints are written (Eq.11 to Eq.15) where M is the expected maximum absolute value of
X'z (typically 10). The outputs of the hidden neurons are then stored in a vector F',, and Eq.16 is used to
compute the neural network outputs Y for each time step (N, X Tyep constraints).

X'y =X"'W, + B, Eq.10
—MxU < X'y <0 Eq.11
~u'y £ X's2 <05 Eq.12
V32 X 53 S M x's Eq.13
X's=X's1+X's2+X'sa Eq.14
F, (X'x): X'sa -0y +0% Eq.15
Y' =F'a.W, +B, Eq.16

Considering the constraints that affect the input values for every time step, the modeling of a
standard MLP for multi steps ahead forecast requires:

® (N;i+ 5 x N+ NO) % Tyep continuous variables
= 3 %X N, x Ty, binary variables
= (Ni+9 X Ny+ N,) x Ty constraints

For instance, for a three steps ahead optimization of the temperature set points and with the chosen
architecture for the 7,, and Pj.. neural networks, the model implementation requires 228 continuous
variables, 21 binary variables and 319 constraints. Note that the computation of the absolute values to
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express the utility function also requires additional continuous varjables (positive and negative
components) and constraints that are not included in those numbers.

3.3 Sample Demand Curves

Before describing the integration of the MPC in a transactive framework, it is useful to examine
how the expected demand curves for the building depend on the settings (ac, ar and ag). In a transactive
market a demand curve corresponds to a bid showing the quantity of energy that an agent (in this case the
building) is willing to consume at a given price [Hao 16]. Demand curves can be plotted by performing
the multi period optimization for different prices profiles. An arbitrary starting point is chosen as
12:00 pm for one of the test days with all the zone temperatures at 22.5 OC. A constant price at 0.4 p.u. is
considered for a three steps ahead prediction (i.e. 15 min). The value attached to the first time step is then
progressively changed in the range [0,1] and the GAMS optimization is launched for every new price
profile. The simulation is performed for different building settings.
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Fig.18 Cost Minimization Vs Comfort - «) Demand Curve - bj Associated sct-points

Fig.18a shows the demand curve for different arbitrages between cost savings and comfort, keeping
az= 0 in all cases. Only P, for the first time step is considered here. The blue line (square markers)
corresponds to the case where maximum priority is' given to cost minimization. The HVAC power then
has a low value. The energy consumed during the first period remains constant no matter the price except
when it is at its lower bound (0 p.u.) where an increment is noticed — meaning that the building is willing
to absorb more power for extremely low prices. Moving the priority progressively towards more comfort
priority, the demand curve shifts progressively towards another extreme (black curve with cross markers),
where, no matter the price, the energy consumed remains constant to achieve the temperature for
maximum comfort (i.e. dropping from 22.5 °C t0 21.0 °C). Fig.18h shows the corresponding temperature
settings for Zone 1 (“corridor”). Depending on the priority given to cost or comfort, this temperature
setting is either minimum (18°C) or maximum (22.5 ©C) except for very low prices.

University Of Washington, Department of Electrical Engineering : 20



Building Model and HVAC Operation August 2016

2 1 0.6 0.4 0 %)
(2% o= aC: . ae=
.% az=0 & a;~0.4 a;=0.6 - ag=1

1.00 1.00
o o
2 2
8 8
g £
2075 TN\ s 07
T h
S 050NN 3 050
= =
g =
8 g
g 0.25 | § 025
3 8
E £

0 7 : ; |

6 9 15 18 19 20 21 2 23 24
Pyvac (KW) — 15 timestep T..; Zone 127B (°C)- 1% timestep
HVAC sel
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If a weight of zero is given to the flexibility component of the objective (i.e. ax = 0), the power
consumption of the building exhibits an insignificant price elasticity. As shown in Fig.18b, the
temperature set points are set at one limit or the other irrespective of the price. This underlines the fact
that in a transactive framework another objective has to be added in order to represent the willingness of
the building to respond to outside incentives. Fig.19¢ shows the demand curves obtained after the
introduction of the price elasticity objective in the utility function and moving from minimum cost
priority to maximum flexibility (a7 =0 in all cases). The blue curve (square markers) is the same as in
Fig.18a with the cost priority. As the weight given to flexibility increases, P acquires a smoother
dependence on the price. Fig.194 shows that the set points do not move from one bound to another.

4 SUPPLIER-BUILDING INTERACTIONS

4.1 Bi-level Optimization

4.1.1 Formulation

As mentioned before, the objective of this project is to incorporate HVAC control in the multi-step
transactive framework as illustrated in Fig.1h. At each iteration, the MPC for every device returns the
predicted power demand profile corresponding to a particular price profile based on the buildings model
and settings (comfort, cost saving, efc.). The optimal solution is determined by the supplier side objective
(balance demand-supply, regulation, efc.). Once the optimal TS profile has been found, it is sent to the
devices in order to schedule their controls for the upcoming time periods.

In this study the supplier side objective is assumed to be to follow a predefined mean power profile
Prarger Tor each hour k. This profile corresponds to the profile of energy purchased by the supplier. In
order to limit the computational time, the method to find the appropriate TS relies on a bi-level
optimization (Fig.20). Interpreting a multi period demand curve in a multi-step framework is not trivial
and evaluating all the prices combination over time could lead to a CPU time greater than the time step
itself.
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Fig.20: Bi-level optimization for multi steps ahead transaction

The bi-level optimization is performed on a rolling basis with a multi step decision making process
from Tygp to Tene. The objective is to find the optimal price profile T that correspond to a consumed Py,
profile that allows following the targeted power for the corresponding hour. As the control of the
building is based on MPC, the measured power Pjuc meas (calculated using the Energy+ model) is
different from the forecast value. Thus the power to follow is corrected intra hour to obtain Piager corr
using Eq.17 in order to mitigate the deviations observed for the previous time steps. The aggregating
entity objective function is then expressed as the RMSE between the P, profile returned by the MPC
controller and the corrected targeted power (Eq.18). Note that the TS are considered as price-like signal
with no specified scale. Thus normalized values between 0 p.u. and 1 p.u. are used in the implementation.

=7 :
1 =T Eq.17
R‘"ge’ = _ﬁ— hvac _meas ([) + (h +1- Tslarl)x Plargel_wrr 4
1L =h
. 1 =1y
T = argmin (Ptargel_corr - Phwzc (Z ))2 Eq'18
Op.usrlpul Tend - rvlm'l =T,

start

On the building side, the MPC calculates the output Py, profile corresponding to the received TS
profile. The building response depends on its settings, i.e. on the relative weight given to cost
minimization, comfort or elasticity. Obviously the ability of the aggregating entity to follow its own
objective is strongly affected by the building preferences.

4.1.2 Search Algorithms

Two search algorithms are tested for optimizing the price profile in the multi step transaction
framework: a Particle Swarm Optimization (PSO) and a Greedy Algorithm (GD). Fig.21« shows the flow
diagram for the Particle Swarm Optimization algorithm. Fig.214 illustrates how the position of the
swarm of particles evolves in the search space. This movement involves three components:
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= A physical component: every particle tends to pursue its movement depending on an
inertia facto w

s A cognitive component: every particle tends to be attracted by its best known position
{(Presr) Observed during past iterations

= A social component: every particle tends to be attracted by the best known position for

the whole swarm (Gpey)

Two acceleration coefficients ¢; and c; are associated with the cognitive and social components. At
each iteration the speed (and therefore the position) of every particle is computed according to Eq.19 with
r; and r; two random coefficients sample using a uniform distribution [Kennedy 93]. i represents the i
parameter of particle p. In this application, each particle is a profile, the parameters are the prices from
Tsar 10 Tong and the particle evaluation correspond to the GAMS optimization using the MPC
implementation. The stopping criteria involve the maximum number of iterations, the computing time
and non-improvement conditions. The values of w, ¢; and ¢, as well as the number of particles have a
direct impact on the performance of the method, because they define the balance the exploration of the
search space and intensification of the search around interesting solutions. Based on [Trelea 03], these
parameters were selected as follows: @ = 0.72, ¢; = ¢,=1.49.

ViiN)=oxV,(N-1)+c xn X(pi _pbcsl)+c2 X1y X(.pi '“Gbes:) Eq.19

Fig.22 shows the architecture of a traditional greedy algorithm (GD). From a given starting point,
the method progressively explores the nD neighborhood with a specified discretization of the search
space. Two options of full factorial design are possible to perform the exploration. At each iteration the
best solution is saved as the central point of the next step. The procedure stops when no improvement is
performed, when the bounds of the search space are reached or when a maximum number of evaluations
has been processed. Then the algorithm is launched again with a finer discretization using the previous
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4.2 Test Results

4.2.1 Case study

The proposed approach is first tested with a single building (the SEB building) for August 20™ and
the Typical Meteorological Year (TMY) data. The baseline corresponds to a case where all the set points
are constant at 22.5 °C all day long. To limit the simulation time and put the emphasis on the impact of
the MPC strategy as compared to the baseline case, the interactions between the building and the supplier
are tested from 1200 to 1500 h with the flowing arbitrary chosen values:

«  From 12:00 to 13:00 — Pigrger = 12 kW
#  From 12:00 to 13:00 — Pigyger = 7 kW
= From 12:00 to 13:00 — Ppger = 9.5 kKW

The PSO algorithm uses 10 particles and a maximum number of 20 iterations with the initial
position determined using Latin Hypercubes in order to get a random sampling that is uniformly
distributed in the search space [Mckay 00].The greedy algorithm is Jaunched using the last recorded price
as the initial point along the optimization horizon (initial value at 0.5 p.u.). The search space (price
profile) discretization is progressively decreased for 0.2 p.u. to 0.025 p.u.

4.2.2  Priority to elasticity

At first the transactive framework is tested with the SEB building giving priority to elasticity
(ag=1, ac=ar=0), i.e. a strong willingness to respond to incentives. A first simulation is performed
using the greedy method. Fig.23« shows the resulting HVAC power profile compared to the baseline case
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with higher value from 1200 to 1300 and a decrease observed from 1300 to 1400 h as expected. On
Fig.23b the actual profile of the virtual building displays strong oscillations that were not predicted and
the mean energy diverge from the targeted value of 9.5 kWh. The zone temperature Fig.23¢ as well as the

final TS profile Fig.23d are consistent with lower values when a higher power is desired and lower values
when it tries to reduce energy consumption. :
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Fig.24: Greedy Method Vs PSO algorithm - o) HVAC power - b) Price profile

Fig.24 and Table | compares the results obtained with the greedy method and with the PSO for the
same case study with priority given to elasticity. The results obtained with these two methods are very
close and produce similar error compared to the target values are observed from 1200 to 1500 h.
However, the greedy method is less time consuming than the PSO. On average the bi-level optimization
performed every 15 min requires 55 calls of the objective function (i.e. MPC optimization here) while the
PSO performs 106 runs. As with the greedy method, the results obtained with the PSO from 1400 to 1500
h show strong HVAC power oscillations and a significant deviation from the target value set of 9.5 kWh.
This stems from a behavior of the virtual building that is not well predicted by the model and results in
high RMSE and relative error values between the forecast and the measures (Table 1).
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Table 1: Obtained Results for priorily given (o elasticity

. Energy Cdnsqlf_l_ed o Energy Consumed Energy Consumed bRM‘SE Relative
from 12:00 to 13:00 - from 13:00 to 14:00 ~ from 14:00 to 15:00 P Error Ppy,,

Target 12 kWh 7 KWh 9.5 kWh ; -
o 12.7 kWh 6.9 kWh 10.4 kWh ,
| GD (error: 6 %) (error: 1 %) (error: 10 %) 2.1 kWh 14 %
i 12.6 kWh 7.0 kWh 10.2 kWh .
Pso. (error: 5 %) (error: 0 %) (error: 7 %) 2.2 kW 15 %

In an attempt to reduce these oscillations and the error, a term was added in the objective function
of the aggregating entity in order to smooth the prices and consequently the set point profile. As ‘
expressed in Eq.20 the goal is to ensure that the product (z(¢) — ©(¢—1))x (2(t+1) — «(9)) is positive. Then
Csc 1s null whenever the constraint is fulfilled and positive otherwise. To ensure the convergence of the
search method the constraint is included in the RMSE minimization in Eq.21 with a penalty factor A
(typically 10°).

C oo (8) = —min((z (1) - (1 = D)x (z(t +1) - 7(1)).0) Eq.20
- LR p Eq.21
T = arg min z (leget_corr - thac (0} + /1 X Co.\'c (Z) q-
opasesipul \| Tona = Toiars =Ty
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Fig.25: Greedy Method and price oscillation constraint- ) HVAC power - b) Price profile

Fig.24 shows the results obtained under the same conditions with the greedy method and the
updated objective function on the aggregating entity side. As expected the resulting price profile is
smoother. It is worth noticing that before 14:00 and 15:00 the TS signal tends to increase in order to
lower the energy consumed to match the hourly target values. For the first period after 13:00 (the same
for 14:00) the observed power is higher than the target value. Therefore, in order to reach the desired
hourly energy, P is lowered by increasing the price signal. Table 2 shows the final values for hourly

energy with an error of 7% compared to the target value, and with a lower RMSE than previously for the
HVAC power prediction.

Table 2: Obtained Results with the oscillation constraint added

Consumed energy Consumed energy Consumed energy - - RMSE. . ' Relative
from 1200 to 1300 h from 1200 to 1300 h from 120010 1300 h Pize Error Py
. Greedy 12.8 kWh 7.1 kWh 10.0 kWh . o
ACuse) (error: 6 %) (error: 1 %) (error: 5 %) L7kW 12%
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4.2.3 Other priorities

Another test is performed with the priority given to the cost minimization (ac = 1, ar= ag = 0) with
the same target power/energy profile. For those settings the building is supposed to be non-responsive to
any incentive as it will try to lower the consumed energy as much as possible. A preliminary test led to
the results shown on Fig.26a. While the energy consumed tends to be lower, strong oscillations can be
observed and the resulting zone temperatures do not necessary increase to minimize energy consumption
in cooling mode. In that case a new constraint is introduced to maintain the set points at a constant value
for the prediction horizon from Ty to T.ne. Fig.27 shows that this results in lower energy consumption
from 1200 to 1500 h. The zone temperatures tends to increase, especially in zone 129 where the upper
bound is reached.
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A case with priority given to comfort was also investigated (a7 =1, a. = ai = 0), i.e. a building that
does not respond to incentives and has constant set points over the optimization horizon. Fig.28 shows
that all the observed zone temperatures tend to reach the reference value set of 21 °C while the energy
consumed remains high. There is no point in interpreting the price profile resulting from the bi-level
optimization for these building settings. For instance, running the GD algorithm the search method would
detect a non-improvement of the solution by exploring the search space around the initial point. The
resulting price profile would be flat and equal to the arbitrary initial point value of 0.5 p.u..

a) o Measured s Target b)  wme=Zone 102 = = Zone 10§ «nens Zone 129
24

13 4 15 16 17 20g i 12 13 14 15 16 17
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Fig.28: Resulis with comfort priority - ¢ HVAC power- b) Zone lemperatures

5 MANAGING MULTIPLE BUILDINGS

5.1 Thermal load model

The previous section considered only one building. We now consider the case where multiple
buildings are managed in a transactive framework. In a central optimization approach managing a large
number of buildings requires too much computing resources. Reduced order model {[acovella 16] or
model free [Ruelens 14Ruelens 14] approaches achieve acceptable computing times for up to 1000 loads.
As already mentioned, one of the advantages of the transactive control is its scalability with a distributed
intelligence using an agent-based approach as in [Zhou 11]. Thus each building is independently
managed depending on its own setting and following the strategy described in section 3.2.

In this section, we consider fictitious buildings. They are represented as a single zone with simple
thermostatically controlled loads (TCL) whose behavior is predicted by equation Eq.22 [Hao 15} and the
discrete formulation shown Eq.23. T and T, represent respectively the indoor and outdoor temperatures.
Ry, and C,, are the thermal resistance and capacitance of the building while COP is the coefficient of
performance attached to the HVAC system. As previously P, is the HVAC power (associated with the
cooling or heating energy).

LA (r-7,,)-bxP,, with a= s Eq.22
dt th X C:h Cth
T+ =T)—ax(T@)~T,,(t))xdt —bx P, (1)x dt Eq.23

In the stationary state, the power required to keep the indoor temperature at a desired set point 7 is
given by Eq.24. The assumption is made that every time the set point is changed, the resulting HVAC
power is equal to the Py, required to maintain T at the desired value.

thac(t) - Tz)ul(t)_];el(t) . Eq,24
R, x COP
In this case study, the building is in cooling mode with Tj, between Tse,_,,,,-,,=18°C and

Ts pex = 24°C. A maximum expected value for the HVAC power Py mar i then computed considering
the minimum setpoints with the highest expected outdoor temperature T,y mar arbitrarily set at 45 OC here

(Eq.25).
Ph _ Toul__ max Tsel_mm Eq.25

vac_max 131)1 <« COP

Depending on the time step (e.g. early in the morning) the outdoor temperature could possibly be
lower than the specified set point. In that case the HVAC system would heat the building resulting in a
negative value for Py, For these time steps, we make the strohg hypothesis that the electrical behavior
of the system is symmetrical in cooling or heating mode by assuming Pu..(f) = |P(?)]. This is somewhat
unrealistic. The outdoor temperature profile used in the previous section is considered for these
simulations as well. Different TCLs are then generated with R, and Cy, values with a uniform distribution
U, (Table 3).
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Table 3: TCL models parameters

Parameter Description‘ Lo . Value ~Unit
Ry, thermal resistance 2 + U0, 0.5) ocikw
Ca thermal capacitance 2 + U0, 0.5) kWh/°C
CcorP coefficient of performance 3+ UL0, 3) -
Tout max design outdoor temperature 40 °c
Tser_min minimum design setpoint 18 °c

5.2 TImplementation

Simulations are run using the implementation illustrated in Fig.29. Here the transactive operation
considers multiple buildings represented with simple TCL models. In the bi-level optimization process
the transactive signal TS is sent simultaneously to the model of each building, which returns its response.
On the supplier, side the decision making process then consider the cumulated load in order to choose the
most appropriate price profile.

P rarger - power value to follow for the current hour

l Measured LPHVACNYIIE(A'

y

Correct the targeted power to
consider in the decision process

Pmrgeum} Bi-level optimization — multi-step ahead transactive speration
T e 1 A M T 3 0 B 0 7 0 2 o e o Y
' ' - !
H A ine Enfi Price profile 7 1 !
V Aggregating Entity N |
} L . ) T'CL Model !
1 | Optimize the price profile in order to L ) ‘
E follow the targeted profile (])ptnm(';.e]thc Zetpon.nls based on the :

S o the models and scttings a, a5 ay
} Minimize RMSECP o coe Pivae Aggregated power TR e GAM !
! L sp Mininize U AT |
4 hvac - {
t\ 4

1 T...* corresponding to z*

1

Emulate the prediction error
for each TCL

Supplier Side Building Side

Fig.29: Transactive operation with multiple fictitious TCL

As seen in the previous section the prediction error in a MPC framework can lead to strong
deviations from the optimized power values. That is why a correction method has been added to adapt
the targeted power. When considering the SEB, the building simulation using the Energy+ model made it
possible to compute the forecast error. With the simple TCL model the prediction uncertainties for Py,
are modeled using a normal distribution N, and a mean relative error shown on Fig. 164 ; 5 % for one step
ahead, 7.5 % for two steps ahead, 10 % for three steps ahead, efc.. When the MPC is processed, a
fictitious measured Ppvae meas 1S computed starting from the predicted optimal P*;,mc returned by the model
for every building. Here ¢ refers to the prediction horizon with the numbers of steps ahead that are
considered. Applying Eq.26, an emulated error is then generated ensuring a monotone increase in
uncertainty over time using both the max and sign functions.
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if 7 =1then £(r) =N, (0,0.05)
else £(r) = max((e(t — )|, |N, (0,0.05+0.025x (¢ = D)X Sign(Pre._peas ¢ =D = Prge (1 =1)) Eq.26
Pinae_meas 1) = (L (1)) Py ()

5.3 Results

Ten heterogeneous TCL were generated using the parameters given in Table 3. Once again to limit
the computational time and highlight the effects of the MPC, the transactive simulation is limited to the
period from 12:00 to 15:00. The targeted hourly mean power to follow is arbitrarily defined and is
expressed as a function of the aggregated maximum HVAC power for all the buildings:

*  From 1200 to 1300 h — Pigyger = 0.6 XZP pyac max
= From 1200 to 1300 h — Prueer = 0.4%EPhvse max
®  From 1200 to 1300 h — Prorger = 0.8%ZP jac max

Three different scenarios are investigated by varying the buildings settings and moving from a
priority given to elasticity (az =1 for all loads) to priority given to comfort (ar= 1 for all loads). As in
the previous simulations the greedy method is used to find the TS. The results displayed on Fig.304 show
that the overall ability to respond to incentives obviously decreases when more buildings become
“uncontrollable” in order to fulfil the comfort requirement. From 1300 to 1400 h the targeted profile
cannot be reached even with 100 % of the TCL set to a maximum flexibility. This level of power
consumption is unreachable given the outdoor temperature and the characteristics of the buildings.
Fig.306 shows the evolution of the mean temperature computed considering all the loads. As expected
strong deviations around the reference value (21 °C) are observed when priority is given to flexibility.
These deviations allows following the targeted power with lower temperature changes for a given
consumption profile. When the proportion of building that favor comfort increases, the magnitude of the
observed oscillations decreases to reach a case where the average temperature is equal to the reference

values for all the building with a7 = 1.
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[fig.30: Results for multi TCL simulation — «) aggregated HVAC power — &) mean temperature

An additional set of simulations was run by varying the number of buildings in order to estimate
the final observed prediction error of the aggregated load. The RMSE (normalized using ZPpac ma) and
the mean relative error were computed by comparing the overall power profile computed by the MPC
with the values generated using Eq.26. As expected, with wide spread heterogeneous loads, the results
show a monotonic decrease when the number of TCL increases (Fig.31). Managing a larger number of
loads then mitigates the forecast errors resulting from the use of model predictive control for the buildings

considered.
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Fig.31: Error Vs number of simulated TCL

CONCLUSIONS

This report describes the implementation of a HVAC system management with MPC in a multi-
step transactive framework. This framework implements a bi-level optimization and ensures that an
objective on the supplier side (i.e. follow a predefined power profile) can be achieved. In particular, the
results highlight the fact that the success of the procedure is closely linked to the preferences of the set of
buildings under control. If al buildings require maximum comfort, no flexibility can be obtained. Adding
an “elasticity” components to the objective function enhances the flexibility provided by the building
compared to the conventional approach that performs a tradeoff between energy savings and comfort.

Further work should investigate the following topics:

= Neural Network were shown to be appropriate for multi-period forecasts. However significant
deviations from the model were observed when simulating the control loop. The performance
of the model should therefore be improved by improving the training data set to match better
the conditions under which the HVAC will be used with the implemented MPC. A constrained
fitting of the weights and bias could also be introduced to ensure the fulfillment of the physical
constraints. '

= In the simulations, the objective of the supplier was to follow an arbitrary defined power
profile. Further studies should investigate different ways of generating this input. For instance,
a day-ahead unit commitment with the building models as storage devices added to inelastic
load could be used to create such a profile.

= Finally, while the first surveys using the transactive approach mostly referred to conventional
building loads, the method could be extended easily to other types of devices (e.g. electrical
vehicles in [Behboodi 16]) as long as a bidding curves can be developed. Future studies should
then consider systems with heterogeneous devices, including controllable and uncontrollable
loads, renewable energy sources and storage units with different utility functions and responses
depending on the transactive signals.
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