

State Project Improvement Grant

PART OF THE ENERGY EFFICIENCY AND SOLAR PROGRAM

Dever Haffner-Ratliffe GRANT MANAGER

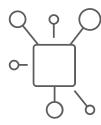
8/14/2019

• Presenting Partners

Hanna Waterstrat SEEP Director

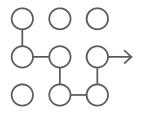
Chuck Murray Efficiency Policy Specialist

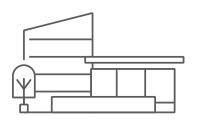
Jennifer Masterson Senior Budget Assistant


Dever Haffner-Ratliffe Grant Manager

• We strengthen communities

HOUSING / HOMELESSNESS


INFRASTRUCTURE


BUSINESS ASSISTANCE

ENERGY

PLANNING

COMMUNITY FACILITIES

CRIME VICTIMS / SAFETY

COMMUNITY SERVICE

Part 1

Introduction to SEEP EE&S Program Overview About this Grant Eligible Projects Alternative Projects Process and Timeline How to Prepare

Preparing a Project The Life Cycle Cost Tool Questions

Part 2

Questions

Project Examples

Phase 2 Preview

State
Efficiency &
Environmental
Performance

Energy Efficiency and Solar Program

Available to Washington Public Entities:

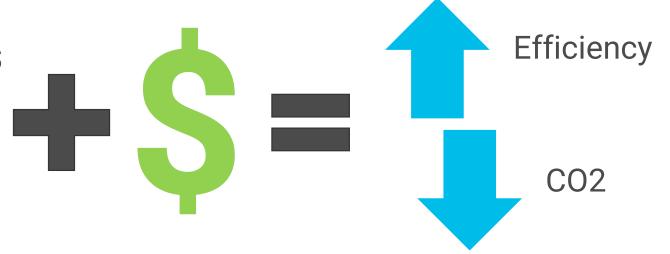
- K-12 Public Schools
- Public Colleges and Universities
- **Local Governments**

- Municipalities, Districts, and Special Districts
- **Tribal Governments**
- Washington State Agencies and Institutions

• Capital Budget Language

New Funding: Section 1039

efficiency compared to the original project request. Prior to awarding funds, the department shall submit to the office of financial management a list of all proposed awards for review and approval.


RE-APPROPRIATION FUNDING: SECTION 6007

(3) \$5,357,000 is provided solely for the state efficiency and environmental performance improvements to minor works and stand-alone projects at state-owned facilities that repair or replace existing building systems including, but not limited to HVAC, lighting, insulation, windows, and other mechanical systems. Eligibility for this funding is dependent on an analysis using the office of financial management's life-cycle cost tool that compares project design alternatives for initial and long-term cost-effectiveness. Assuming a reasonable return on investment, the department shall provide grants in the amount required to improve the project's energy efficiency compared to the original project request. Prior to awarding funds, the department shall submit to the office of financial management a list of all list of all proposed awards for review and approval.

State Project Improvement (SPI) Grant

Previously known as the "Minor Works" Grant

- √ State Owned Facilities
- √ Repair or Replacing
- √ Capital Funds

SPI Overview

Funding from 2017-2019 and 2019.

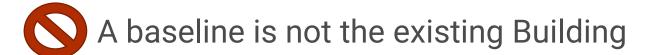
2nd time this has been offered.

\$6,554,290 available for grants.

Grant will provide up to 100% of the baseline project cost.

If there is over subscription of the funds, grants will be ranked based on reductions in carbon emissions compared to baseline.

If any funding is left over, the intent is to award remaining funds on a first come first served basis.



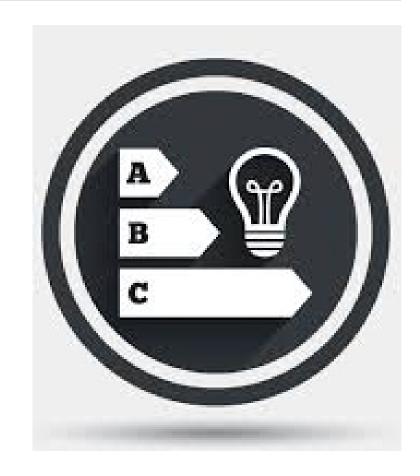
Project Eligibility

Baseline or Base case

The Baseline Project Must:

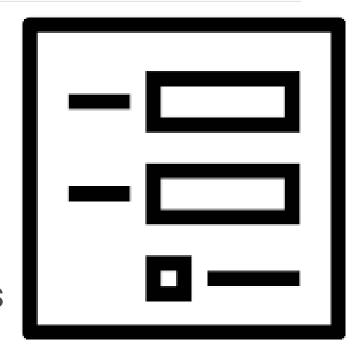
- ✓ State Owned Facility
- ✓ Existing Capital Funding
- ✓ Be Fully Funded
- √ Repair or Replace an Existing System
- ✓ Meet Applicable Code Requirements

What is your baseline project?


• Alternative Projects

What SPI will fund

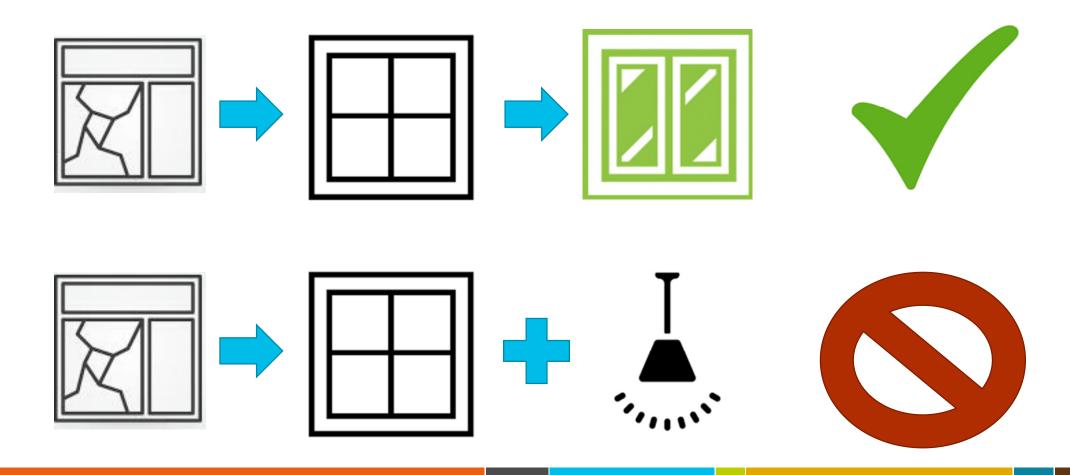
- ✓ Expansion of Existing Scope
- √ Same Location
- ✓ Improves the Efficiency
- ✓ Energy Savings must Pay for additional cost over lifetime


Reduces CO2 emissions

- 8/26 Notice of Funding Opportunity
 - Phase 1 Application

- 9/25 Eligible applicants will be notified
 - Phase 2 application available
 - Commerce will provide detailed instructions

Successful Applicants Notified in February 2020!


• Preparing to Apply

Phase 1

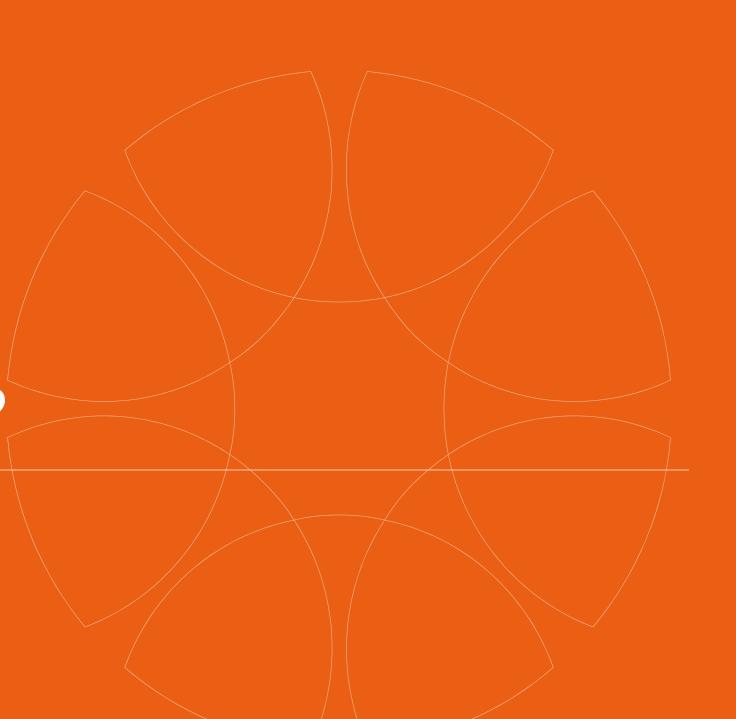
Tell us about your baseline project and what you want to do to improve it.

- ✓ Identify an eligible baseline project (baseline)
- ✓ Research ways to increase the energy efficiency (alternative)
- ✓ Estimate the additional cost of the alternative
- ✓ Verify the utility incentives available
- ✓ Keep it simple the application will be a couple of pages

Project Examples

Preparing to Apply

Phase 2


- ✓ Eligible Phase 1 Applications will be informed
- ✓ Commerce will provide detailed instructions
- ✓ More research and development will be required

Questions?

Next: Part 2

Preparing a Project

The Life Cycle Cost Tool

Preparing for the Phase 2 Application

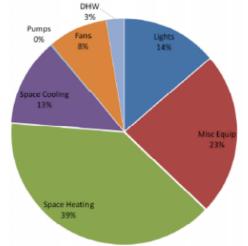
Preparing a Project
The Life Cycle Cost Tool

The Mandatory Tool

- <u>Life Cycle Cost Tool</u> (Excel) | <u>Instructions</u>
 - Introduction to the life cycle cost tool webinars
 - Life cycle cost tool training webinars
- Evaluation Life Cycle Cost Analysis Tool (Excel) | HVAC example
- https://www.ofm.wa.gov/budget/budget-instructions/budgetforms

Life cycle cost inputs

- Applies to the base case project and the SPI project
- Efficiency Measure
 - First cost
 - energy impact +/- (includes demand (KW) and energy (KWH, therms)
 - expected service life
 - First year service cost (repeated every year)
- Project Cost
 - One time upfront cost
 - Reoccurring annual cost



Billing History

 Some idea how the existing building uses energy to assure

final savings estimates are

realistic

End Use	kWh	therms	kBTU	%
Lights	85,668		292,300	14%
Misc Equip	145,457		496,300	23%
Space Heating		8,336	833,600	39%
Space Cooling	78,605		268,200	13%
Pumps	645		2,200	0%
Fans	52,550		179,300	8%
DHW		547	54,700	3%
Total Estimated	362,925	8,883	2,126,600	100%
Historical Billing	366,455	9,217	2,172,044	
Percent of Actual	99%	969	6 98%	
Total per sq ft	11.9	0.3	69.5	

• Energy Use Estimates

Simple

- Utility Efficiency Program Estimate
- Prescriptive results such as DEEMED measure savings or Prescriptive Worksheets

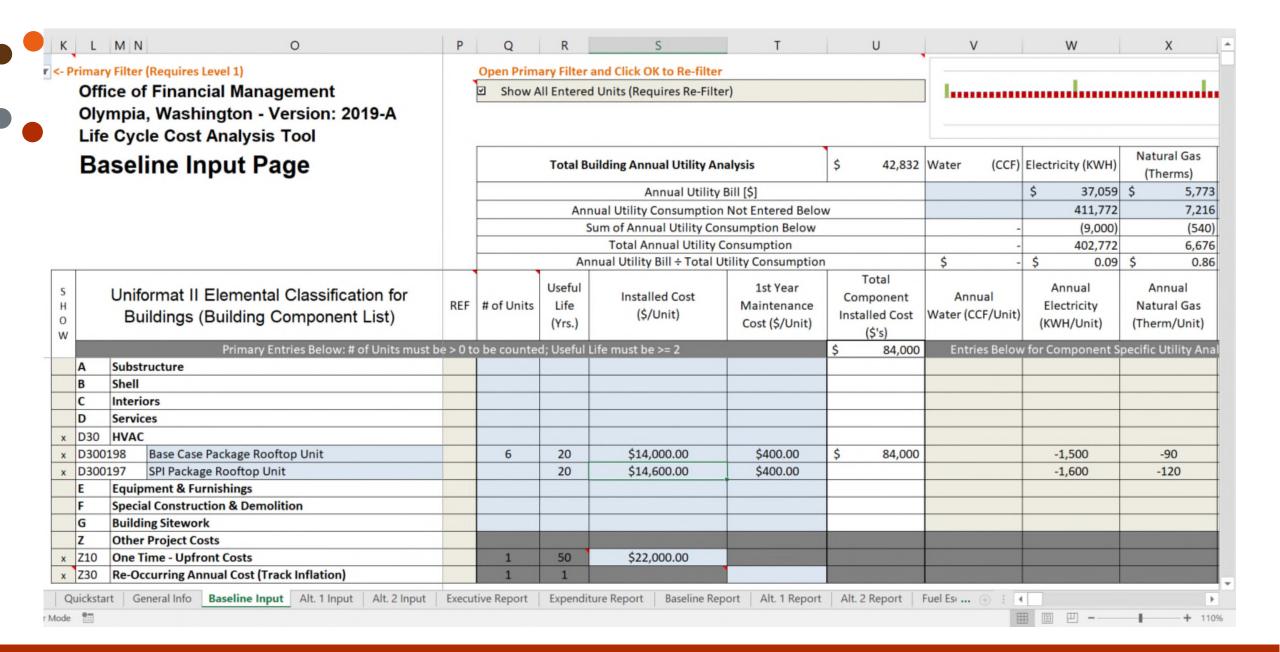
Custom

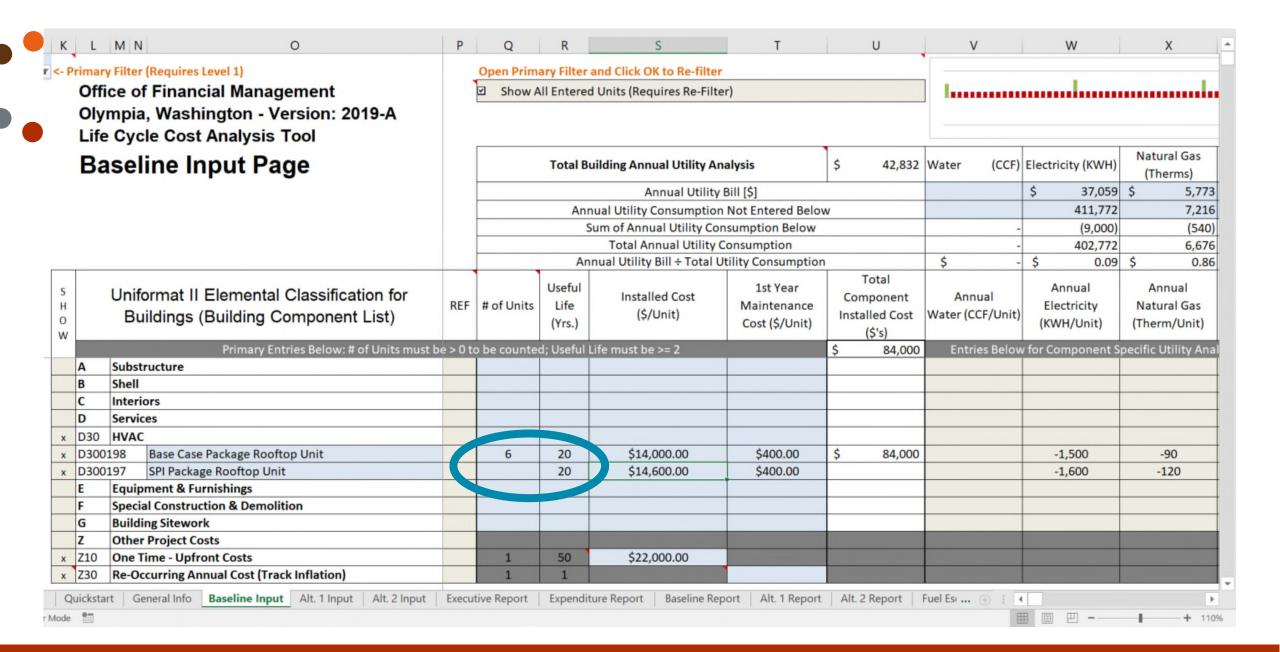
- Engineering Estimates
- For example: Utility Custom Program, ESCO program or ASHRAE Level 2 audit protocols.

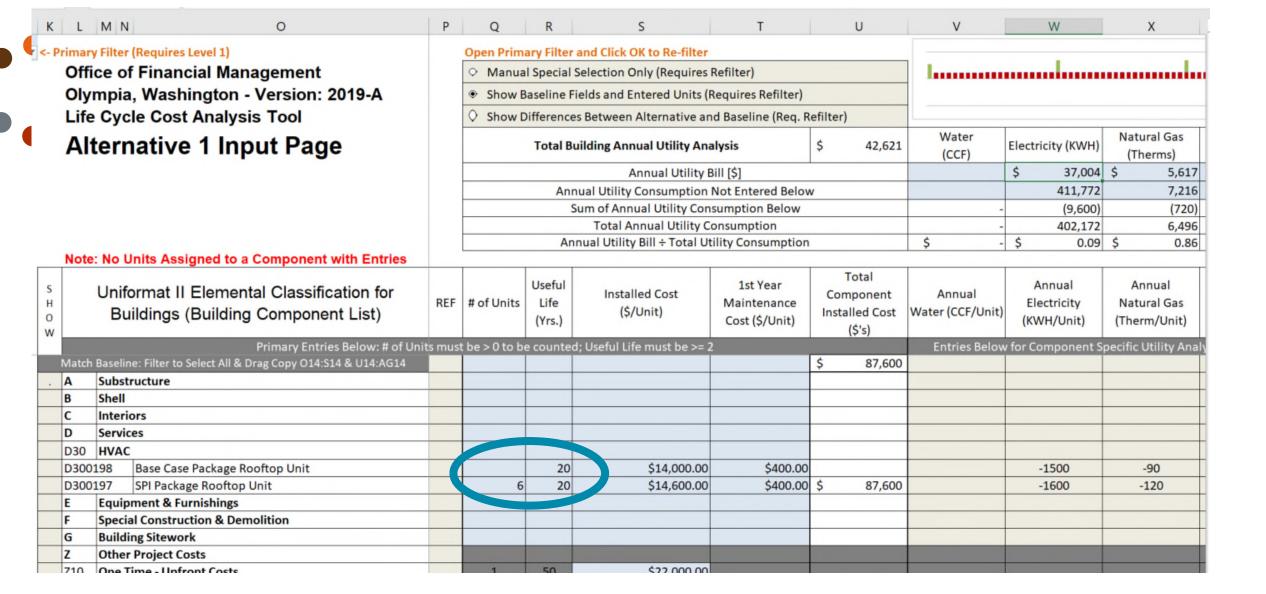
• Energy Use Estimates for Custom Projects

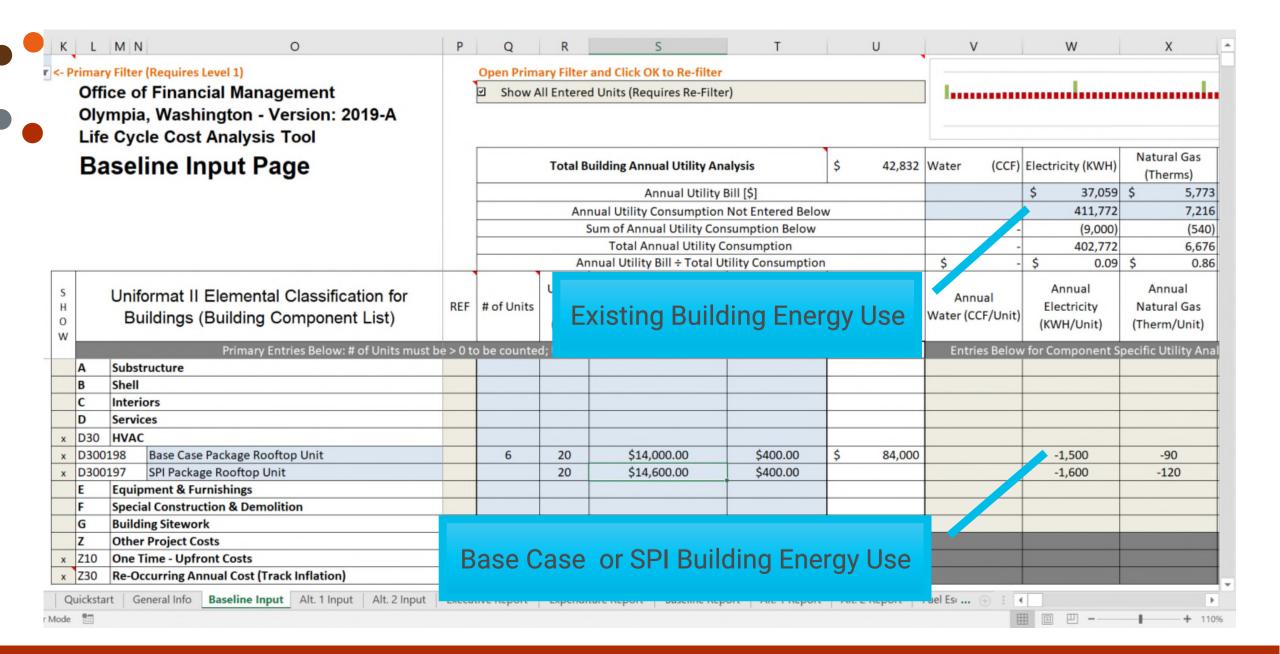
- Existing Building
 - Utility billing data
 - energy consumption and demand
 - Cost of energy, demand and base fees
- Base Capital Project
 - Analysis of energy savings compared to the existing building
 - Savings are anticipated from meeting code and other project objectives
- SPI Project
 - Analysis of energy savings compared to the existing building

Base Case Energy Code Reminders


- For retrofits or equipment replacements, all the elements of the base case project are required to meet code. Basically any element of the building that is changed by the retrofit must meet code requirements.
- Code may require additional equipment and controls to be installed. For example, if the project replaces HVAC equipment that does not have an economizer, the replacement of equipment may require the addition of an economizer to meet code.
- Code includes scheduling, testing, balancing and commissioning activates. This work is part of the base case.
- A major renovation or change in occupancy type may trigger full code compliance for the building. It may not. Confirm with the local building official.
- The energy code will be updated shortly. Projects applying for permits after July 1, 2020 will be required to meet the 2018 edition of the energy code.




• Measure Life


- Life cycle cost assessment must consider useful life
- This suggests a good level of detail in completing the life cycle cost tool
- BOMA Preventive Maintenance Guidebook
 - https://icap.sustainability.illinois.edu/files/projectupdate/2289/Project%20Lifespan%20Estimates.pdf

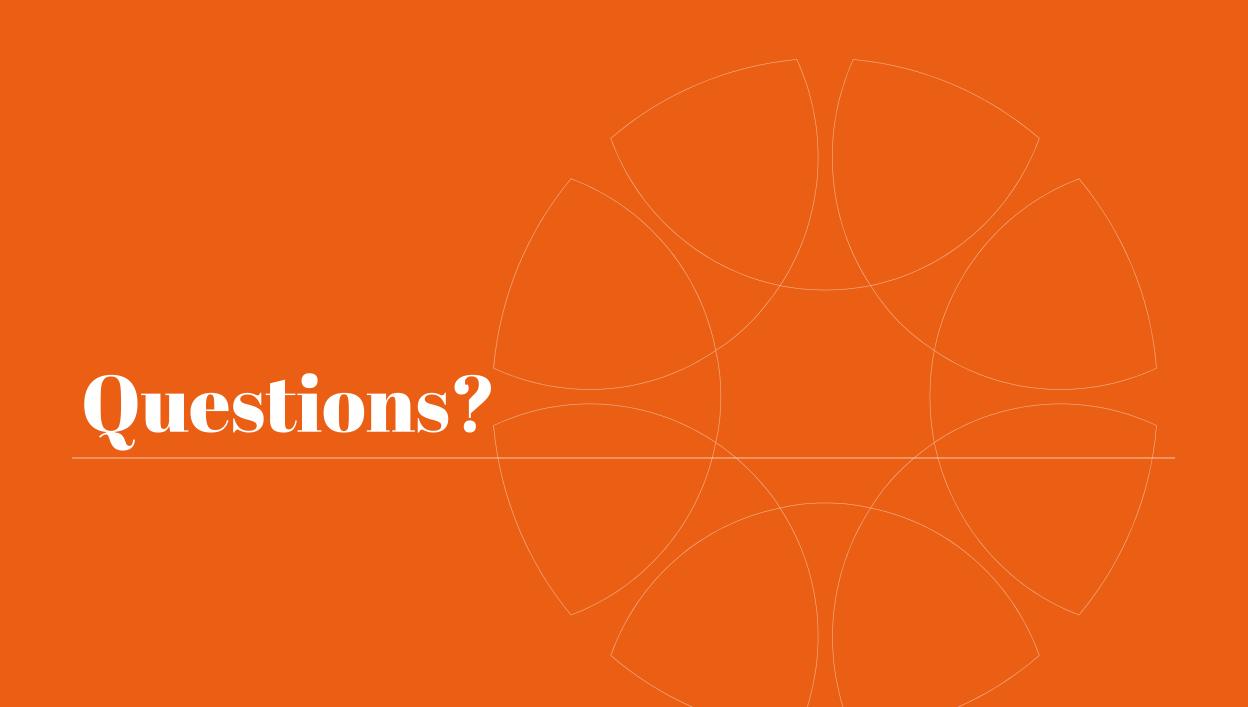
 Coils—Fluid to Air Direct Expansion (refrigerant) 	18	26. Electric Motors a. Without Soft Start	18
b. Water/Steam Heating	20	b. With Soft Start	25
c. Cooling and Dehumidifying	12	27. Motor Starters	
d. Electric	12	a. In Dry Noncorrosive Areas	25
17. Heat Exchangers a. Commercial—Shell and Tube		 b. In Wet or Corrosive Areas (cooling towers) 	10
i. Steam to Domestic Water	13	28. Electric Transformers	
ii. Steam to Heating Water	20	a. Oil-Filled	30

Key Analysis \	/ariables	Building Char	racteristics		
Study Period (years)	50	50 Gross (Sq.Ft)			
Nominal Discount Rate	3.46%	Useable (Sq.Ft)	42,000		
Maintenance Escalation	1.00%	Space Efficiency	100.0%		
Zero Year (Current Year)	2020	Project Phase	0		
Construction Years	0	Building Type	0		

Life Cycle Cost Analysis		BEST					
Alternative	Baseline		Alt. 1		Alt. 2		
Energy Use Intenstity (kBtu/sq.ft)	48.6		48.1		48.1		
1st Construction Costs	\$ 106,000	\$	109,600	\$	109,600		
PV of Capital Costs	\$ 219,667	\$	228,139	\$	228,139		
PV of Maintenance Costs	\$ 117,113	\$	117,113	\$	117,113		
PV of Utility Costs	\$ 2,086,837	\$	2,074,652	\$	2,086,837		
Total Life Cycle Cost (LCC)	\$ 2,423,617	\$	2,419.902	\$	2,432,089		
Net Present Savings (NPS)	N/A	\$	3,714	\$	(8,471)		

Societal LCC takes into consideration the social cost of carbon dioxide emissions caused by operational energy consumption

(GHG) Social Life Cycle Cost		BEST		
GHG Impact from Utility Consumption	Baseline	Alt. 1		Alt. 2
Tons of CO2e over Study Period	10,067	1,007		10,007
% CO2e Reduction vs. Baseline	N/A	1%		1%
Present Social Cost of Carbon (SCC)	\$ 930,662	\$ 925,100	7-	925,100
Total LCC with SCC	\$ 3,354,279	\$ 3,345,004	\$	3,357,189
NPS with SCC	N/A	\$ 9,276	\$	(2,910)



Key Analysis \	/ariables	Building Chai	racteristics
Study Period (years)	50	Gross (Sq.Ft)	42,000
Nominal Discount Rate	3.46%	Useable (Sq.Ft)	42,000
Maintenance Escalation	1.00%	Space Efficiency	100.0%
Zero Year (Current Year)	2020	Project Phase	0
Construction Years	0	Building Type	0

Life Cycle Cost Analysis		BEST				
Alternative	Baseline		Alt. 1		Alt. 2	
		;		48.1		48.1
NPS for the alternate is positive		165 000	\$	109,600	\$	109,600
		219,66,	\$	228,139	\$	228,139
PV or iviaintenance Costs	>	117,113	\$	117,113	\$	117,113
PV of Utility Costs	\$	2,086,837	\$	2,074,652	\$	2,086,837
Total Life Cycle Cost (LCC)	\$	2,423,617	\$	2,419,903	\$	2,432,089
Net Present Savings (NPS)	N/A	4	\$	3,714	\$	(8,471)

Societal LCC takes into consideration the social cost of carbon dioxide emissions caused by operational energy consumption

				BEST	
CO2e reduction vs baseline is 1%		е	Alt. 1	Alt. 2	
			10,067	10,007	10,007
% CO2e Reduction vs. Baseline		N/A		1%	1%
Present Social Cost of Carbon (SCC)	\$		930,662	\$ 925,100	\$ 925,100
Total LCC with SCC	\$		3,354,279	\$ 3,345,004	\$ 3,357,189
NPS with SCC		N/A		\$ 9,276	\$ (2,910)

Thank you!

Program/Grant Questions:

DEVER HAFFNER-RATLIFFE

Email: EEandS@commerce.wa.gov

Phone: 360-522-3610

SEEP Office Questions:

HANNA WATERSTRAT

Email: Hanna.Waterstrat@commerce.wa.gov


Phone: (360) 764-0015

Capital Budget Questions

JENNIFER MASTERSON

Email: jennifer.masterson@ofm.wa.gov

Phone: (360) 902-0579

www.commerce.wa.gov

